Hive Date Partitioned table - Streaming Data in S3 with mixed dates - amazon-s3

I have extensive experience working with Hive Partitioned tables. I use Hive 2.X. I was interviewing for a Big Data Solution Architect role and I was asked the below question.
Question: How would you ingest a streaming data in a Hive table partitioned on Date? The streaming data is first stored in S3 bucket and then loaded to Hive. Although the S3 bucket names have a date identifier such as S3_ingest_YYYYMMDD, the content could have data for more than 1 date.
My Answer: Since the content could have more than 1 Date, creating external table might not be possible since we want to read the file and distribute the file based on the date. I suggested we first load the S3 bucket in an external staging table with no partitions and then Load/Insert the final date partition table using Dynamic Partition settings which will dynamically distribute the data to the correct partition directory.
The interviewer said my answer was not correct and I was curious to know what the correct answer was, but ran out of time.
The only caveat in my answer is that, over time the partitioned date directories will have multiple small files that can lead to small file issue, which can always be handled via batch maintenance process.
What are the other/correct options to handle this scenario?
Thanks.

It depends on the requirements.
As per my understanding if one file or folder with S3_ingest_YYYYMMDD files can contain more than one date, then some events are loaded the next day or even later. This is rather common scenario.
Ingestion date and event date are two different dates. Put ingested files into table partitioned by ingestion date (LZ). You can track the initial data. If reprocessing is possible, then use ingestion_date as a bookmark for reprocessing of LZ table.
Then schedule a process which will take two or more last days of ingestion date and load into table partitioned by event_date. Last day will be always incomplete, and may be you need to increase look-back period to 3 or even more ingestion days (using ingestion_date >= current_date - 2 days filter), it depends how many dates back ingestion may load event dates. And in this process you are using dynamic partitioning by event_date and applying some logic - cleaning, etc and loading into ODS or DM.
This approach is very similar to what you proposed. The difference is in first table, it should be partitioned to allow you process data incrementally and to do easy restatement if you need to change the logic or upstream data was also restated and reloaded in the LZ.

Related

Google Dataflow store to specific Partition using BigQuery Storage Write API

I want to store data to BigQuery by using specific partitions. The partitions are ingestion-time based. I want to use a range of partitions spanning over two years. I use the partition alias destination project-id:data-set.table-id$partition-date.
I get failures since it does recognise the destination as an alias but as an actual table.
Is it supported?
When you ingest data into BigQuery, it will land automatically in the corresponding partition. If you choose a daily ingestion time as partition column, that means that every new day will be a new partition. To be able to "backfill" partitions, you need to choose some other column for the partition (e.g. a column in the table with the ingestion date). When you write data from Dataflow (from anywhere actually), the data will be stored in the partition corresponding to the value of that column for each record.
Direct writes to partitions by ingestion time is not supported using the Write API.
Also using the stream api is not supported if a window of 31 days has passed
From the documentation:
When streaming using a partition decorator, you can stream to partitions within the last 31 days in the past and 16 days in the future relative to the current date, based on current UTC time.
The solution that works is to use BigQuery load jobs to insert data. This can handle this scenario.
Because this operation has lot's of IO involved (files getting created on GCS), it can be lengthy, costly and resource intensive depending on the data.
A approach can be to create table shards and split the Big Table to small ones so the Storage Read and the Write api can be used. Then load jobs can be used from the sharded tables towards the partitioned table would require less resources, and the problem is already divided.

Streaming data to a specific BigQuery Time Partition

I would like to know if there is any way to stream data to a specific time partition of a BigQuery table. The documentation says that you must use table decorators:
Loading data using partition decorators
Partition decorators enable you to load data into a specific
partition. To adjust for timezones, use a partition decorator to load
data into a partition based on your preferred timezone. For example,
if you are on Pacific Standard Time (PST), load all data generated on
May 1, 2016 PST into the partition for that date by using the
corresponding partition decorator:
[TABLE_NAME]$20160501
Source: https://cloud.google.com/bigquery/docs/partitioned-tables#dealing_with_timezone_issues
And:
Restating data in a partition
To update data in a specific partition, append a partition decorator
to the name of the partitioned table when loading data into the table.
A partition decorator represents a specific date and takes the form:
$YYYYMMDD
Source: https://cloud.google.com/bigquery/docs/creating-partitioned-tables#creating_a_partitioned_table
But if I try to use them when streaming data i got the following error: Table decorators cannot be used with streaming insert.
Thanks in advance!
Sorry for the inconvenience. We are considering providing support for this in the near future. Please stay tuned for more updates.
Possible workarounds that might work in many cases:
If you have most of the data available(which is sometimes the case when restating data for an old partition), you can use a load job with the partition as the destination.
Another option is to stream to a temporary table and after the data has been flushed from the streaming buffer, use bq cp
This feature was recently released and you can now stream directly into a decorated date partition within the last 30 days historically and 5 days into the future.
https://cloud.google.com/bigquery/streaming-data-into-bigquery

Dynamic partitioning in google cloud dataflow?

I'm using dataflow to process files stored in GCS and write to Bigquery tables. Below are my requirements:
input files contain events records, each record pertains to one eventType;
need to partition records by eventType;
for each eventType output/write records to a corresponding Bigquery table, one table per eventType.
events in each batch input files vary;
I'm thinking of applying transforms such as "groupByKey" and "partition", however seems that I have to know number of (and type of) events at the development time which is needed to determine the partitions.
Do you guys have a good idea to do the partitioning dramatically? meaning partitions can be determined at run time?
Why not loading everything into a single "raw" bigquery table and then using BigQuery API determine the different number of events and export each event type to its own table (e.g., via https://cloud.google.com/bigquery/bq-command-line-tool#createtablequery) or an API call?
If your input format is simple, you can do that without using dataflow at all and it will be probably more cost efficient.

Need help designing a DB - for a non DBA

I'm using Google's Cloud Storage & BigQuery. I am not a DBA, I am a programmer. I hope this question is generic enough to help others too.
We've been collecting data from a lot of sources and will soon start collecting data real-time. Currently, each source goes to an independent table. As new data comes in we append it into the corresponding existing table.
Our data analysis requires each record to have a a timestamp. However our source data files are too big to edit before we add them to cloud storage (4+ GB of textual data/file). As far as I know there is no way to append a timestamp column to each row before bringing them in BigQuery, right?
We are thus toying with the idea of creating daily tables for each source. But don't know how this will work when we have real time data coming in.
Any tips/suggestions?
Currently, there is no way to automatically add timestamps to a table, although that is a feature that we're considering.
You say your source files are too big to edit before putting in cloud storage... does that mean that the entire source file should have the same timestamp? If so, you could import to a new BigQuery table without a timestamp, then run a query that basically copies the table but adds a timestamp. For example, SELECT all,fields, CURRENT_TIMESTAMP() FROM my.temp_table (you will likely want to use allow_large_results and set a destination table for that query). If you want to get a little bit trickier, you could use the dataset.DATASET pseudo-table to get the modified time of the table, and then add it as a column to your table either in a separate query or in a JOIN. Here is how you'd use the DATASET pseudo-table to get the last modified time:
SELECT MSEC_TO_TIMESTAMP(last_modified_time) AS time
FROM [publicdata:samples.__DATASET__]
WHERE table_id = 'wikipedia'
Another alternative to consider is the BigQuery streaming API (More info here). This lets you insert single rows or groups of rows into a table just by posting them directly to bigquery. This may save you a couple of steps.
Creating daily tables is a reasonable option, depending on how you plan to query the data and how many input sources you have. If this is going to make your queries span hundreds of tables, you're likely going to see poor performance. Note that if you need timestamps because you want to limit your queries to certain dates and those dates are within the last 7 days, you can use the time range decorators (documented here).

ALTER PARTITION FUNCTION to include 1.5TB worth of data for a quick switch

I inhereted a unmaintained database in which the partition function was set on a date field and expired on the first of the year. The data is largely historic and I can control the jobs that import new data into this table.
My question is relating to setting up or altering partitioning to include so much data, roughly 1.5TB counting indexes. This is on a live system and I don't know what kind of impact it will have with so many users connecting to it at once. I will test this on a non prod system but then I can't get real usage load on there. My alternative solution was to kill all the users hitting the DB and quickly doing a rename of the table, and renaming a table that does have a proper partitioning scheme in.
I wanted to:
-Keep the same partition function but extend it to:
keep all 2011 data up to a certain date (let's say Nov 22nd 2011) on 1 partition, all data coming in after that need to be put in their own new partitions
-Do a quick switch of the specific partition which has the full years worth of data
Anyone know if altering a partition on a live system to include a new partition for a full years worth of data, roughly 5-6 billion records and 1.5tb, is plausible? Any pitfalls? I will share my test results once I complete them but want any input. Thanks!
Partitions switch are a metadata only operation and the size of the partition switched in or out does not matter, it can be 1Kb or 1TB, it takes the exactly same amount of time (ie. very fast).
However what you're describing is not a partition switch operation, but a partition split: you want to split the last partition of the table into two partitions, one containing all the existing data and a new one empty. Splitting a partition has to split the data, and unfortunately this is an offline size-of-data operation.