I am trying to plot one dependent variable vs two independent variables using matplotlibs heatmap feature, however, I cannot get the image to display correctly. Code and image below.
plt.xticks(np.arange(0, .015, .0015))
plt.yticks(np.arange(-.0005, .0005, .00005))
plt.scatter(Dataset.Gate, Dataset.Bias, c = Dataset.Current)
Related
I am trying to create two images side by side: one satellite image alone, and next to it, the same satellite image with outlines of agricultural fields. My raster data "raster_clip" is loaded into rioxarray (original satellite image from NAIP, converted from .sid to .tif), and my vector data "ag_clip" is in geopandas. My code is as follows:
fig, (ax1, ax2) = plt.subplots(ncols = 2, figsize=(14,8))
raster_clip.plot.imshow(ax=ax1)
raster_clip.plot.imshow(ax=ax2)
ag_clip.boundary.plot(ax=ax1, color="yellow")
I can't seem to figure out how to get the y axes in each plot to be the same. When the vector data is excluded, then the two plots end up the same shape and size.
I have tried the following:
Setting sharey=True in the subplots method. Doesn't affect shape of resulting images, just removes the tic labels on the second image.
Setting "aspect='equal'" in the imshow method, leads to an error, which doesn't make sense because the 'aspect' kwarg is listed in the documentation for xarray.plot.imshow.
plt.imshow's 'aspect' kwarg is not available in xarray
Removing the "figsize" variable, doesn't affect the ratio of the two plots.
not entirely related to your question but i've used cartopy before for overlaying a GeoDataFrame to a DataArray
plt.figure(figsize=(16, 8))
ax = plt.subplot(projection=ccrs.PlateCarree())
ds.plot(ax=ax)
gdf.plot(ax=ax)
I am a recent migrant from Matlab to Python and have recently worked with Numpy and Matplotlib. I recoded one of my scripts from Matlab, which employs Matlab's contourf-function, into Python using matplotlib's corresponding contourf-function. I managed to replicate the output in Python, apart that the contourf-plots are not exacly the same, for a reason that is unknown to me. As I run the contourf-function in matplotlib, I get this otherwise nice figure but it has these sharp edges on the contour-levels on top and bottom, which should not be there (see Figure 1 below, matplotlib-output). Now, when I export the arrays I used in Python to Matlab (i.e. the exactly same data set that was used to generate the matplotlib-contourf-plot) and use Matlab's contourf-function, I get a slightly different output, without those sharp contour-level edges (see Figure 2 below, Matlab-output). I used the same number of levels in both figures. In figure 3 I have made a scatterplot of the same data, which shows that there are no such sharp edges in the data as shown in the contourf-plot (I added contour-lines just for reference). Example dataset can be downloaded through Dropbox-link given below. The data set contains three txt-files: X, Y, Z. Each of them are an 500x500 arrays, which can be directly used with contourf(), i.e. plt.contourf(X,Y,Z,...). The code that used was
plt.contourf(X,Y,Z,10, cmap=plt.cm.jet)
plt.contour(X,Y,Z,10,colors='black', linewidths=0.5)
plt.axis('equal')
plt.axis('off')
Does anyone have an idea why this happens? I would appreciate any insight on this!
Cheers,
Jussi
Below are the details of my setup:
Python 3.7.0
IPython 6.5.0
matplotlib 2.2.3
Matplotlib output
Matlab output
Matplotlib-scatter
Link to data set
The confusing thing about the matlab plot is that its colorbar shows much more levels than there are actually in the plot. Hence you don't see the actual intervals that are contoured.
You would achieve the same result in matplotlib by choosing 12 instead of 11 levels.
import numpy as np
import matplotlib.pyplot as plt
X, Y, Z = [np.loadtxt("data/roundcontourdata/{}.txt".format(i)) for i in list("XYZ")]
levels = np.linspace(Z.min(), Z.max(), 12)
cntr = plt.contourf(X,Y,Z,levels, cmap=plt.cm.jet)
plt.contour(X,Y,Z,levels,colors='black', linewidths=0.5)
plt.colorbar(cntr)
plt.axis('equal')
plt.axis('off')
plt.show()
So in conclusion, both plots are correct and show the same data. Just the levels being automatically chosen are different. This can be circumvented by choosing custom levels depending on the desired visual appearance.
I am trying to produce a figure/plot with more than a single heatmap (matrix with color shading according to the cell value). At the moment using Plots;
pyplot() and heatmap(mat) is enough to produce a heatmap.
It is not clear to me how to produce a single figure with more though. After looking at this page example subplots for how to use the layout, and then the example histogram, I cannot seem to produce working examples for the two together.
The question is how to produce a figure with two different matrices displayed via heatmap or some other function to do the same?
(as an extra side, could you also explain the context of the 'using' statement and how it relates to the 'backend'?)
The easiest way is to make a Vector of heatmaps, then plot those
using Plots
hms = [heatmap(randn(10,10)) for i in 1:16];
plot(hms..., layout = (4,4), colorbar = false)
The using statement calls the Plots library. The "backend" is another package, loaded by Plots, that does the actual plotting. Plots itself has no plotting capabilities - it translates the plot call to a plot call for the backend package.
Explanation of the code above:
Plotting with Plots is a two-step process. 1: plot generates a Plot object with all the information for the plot; 2: when a Plot object is returned to the console, it automatically calls julia´s display function, which then generates the plot. But you can do other things with the Plot object first, like put it in an array.
The heatmap call is a short form of plot(randn(10,10), seriestype = :heatmap), so it just creates a Plot object. 16 Plot objects are stored in the vector.
Passing a number of Plot objects to plot creates a new, larger Plot, with each of the incoming Plot objects as subplots. The splat operator ... simply passes each element of the Array{Plot} to plot as an individual argument.
I'm trying to make a grid in ggplot to plot 4 graphs, as if it were a basic pair (mfrow = c (2,2)). However, I can not execute the code. I have already tried with gridExtra and cowplot with the functions plot_grid, grid.arrange, ggplot2.multiplot and also tried with the multiplot function. The error that appears is as follows:
Error: Aesthetics must be either length 1 or the same as the data (8598): alpha, x, y, group
gridExtra::grid.arrange(ggplot(),ggplot(),ggplot(),ggplot(), nrow=2)
produces
you may want to debug your code for each individual plot first.
Plots is simple and powerful but sometimes I would like to have a little bit more control over individual elements of the plot to fine-tune its appearance.
Is it possible to update the plot object of the backend directly?
E.g., for the default pyplot backend, I tried
using Plots
p = plot(sin)
p.o[:axes][1][:xaxis][:set_ticks_position]("top")
but the plot does not change. Calling p.o[:show]() afterwards does not help, either.
In other words: Is there a way to use the PyPlot interface for a plot that was initially created with Plots?
Edit:
The changes to the PyPlot object become visible (also in the gui) when saving the figure:
using Plots
using PyPlot
p = Plots.plot(sin, top_margin=1cm)
gui() # not needed when using the REPL
gca()[:xaxis][:set_ticks_position]("top")
PyPlot.savefig("test.png")
Here, I used p.o[:axes][1] == gca(). One has to set top_margin=1cm because the plot area is not adjusted automatically (for my actual fine-tuning, this doesn't matter).
This also works for subsequent updates as long as only the PyPlot interface is used. E.g., after the following commands, the plot will have a red right border in addition to labels at the top:
gca()[:spines]["right"][:set_color]("red")
PyPlot.savefig("test.png")
However, when a Plots command like plot!(xlabel="foo") is used, all previous changes made with PyPlot are overwritten (which is not suprising).
The remaining question is how to update the gui interactively without having to call PyPlot.savefig explicitly.
No - the plot is a Plots object, not a PyPlot object. In your specific example you can do plot(sin, xmirror = true).
I'm trying to do the same but didn't find a solution to update an existing plot. But here is a partial answer: you can query information from the PyPlot axes object
julia> Plots.plot(sin, 1:4)
julia> Plots.PyPlot.plt[:xlim]()
(1.0,4.0)
julia> Plots.plot(sin, 20:24)
julia> ax = Plots.PyPlot.plt[:xlim]()
(20.0,24.0)
and it gets updated.