I am trying to produce a figure/plot with more than a single heatmap (matrix with color shading according to the cell value). At the moment using Plots;
pyplot() and heatmap(mat) is enough to produce a heatmap.
It is not clear to me how to produce a single figure with more though. After looking at this page example subplots for how to use the layout, and then the example histogram, I cannot seem to produce working examples for the two together.
The question is how to produce a figure with two different matrices displayed via heatmap or some other function to do the same?
(as an extra side, could you also explain the context of the 'using' statement and how it relates to the 'backend'?)
The easiest way is to make a Vector of heatmaps, then plot those
using Plots
hms = [heatmap(randn(10,10)) for i in 1:16];
plot(hms..., layout = (4,4), colorbar = false)
The using statement calls the Plots library. The "backend" is another package, loaded by Plots, that does the actual plotting. Plots itself has no plotting capabilities - it translates the plot call to a plot call for the backend package.
Explanation of the code above:
Plotting with Plots is a two-step process. 1: plot generates a Plot object with all the information for the plot; 2: when a Plot object is returned to the console, it automatically calls julia´s display function, which then generates the plot. But you can do other things with the Plot object first, like put it in an array.
The heatmap call is a short form of plot(randn(10,10), seriestype = :heatmap), so it just creates a Plot object. 16 Plot objects are stored in the vector.
Passing a number of Plot objects to plot creates a new, larger Plot, with each of the incoming Plot objects as subplots. The splat operator ... simply passes each element of the Array{Plot} to plot as an individual argument.
Related
I am trying to create two images side by side: one satellite image alone, and next to it, the same satellite image with outlines of agricultural fields. My raster data "raster_clip" is loaded into rioxarray (original satellite image from NAIP, converted from .sid to .tif), and my vector data "ag_clip" is in geopandas. My code is as follows:
fig, (ax1, ax2) = plt.subplots(ncols = 2, figsize=(14,8))
raster_clip.plot.imshow(ax=ax1)
raster_clip.plot.imshow(ax=ax2)
ag_clip.boundary.plot(ax=ax1, color="yellow")
I can't seem to figure out how to get the y axes in each plot to be the same. When the vector data is excluded, then the two plots end up the same shape and size.
I have tried the following:
Setting sharey=True in the subplots method. Doesn't affect shape of resulting images, just removes the tic labels on the second image.
Setting "aspect='equal'" in the imshow method, leads to an error, which doesn't make sense because the 'aspect' kwarg is listed in the documentation for xarray.plot.imshow.
plt.imshow's 'aspect' kwarg is not available in xarray
Removing the "figsize" variable, doesn't affect the ratio of the two plots.
not entirely related to your question but i've used cartopy before for overlaying a GeoDataFrame to a DataArray
plt.figure(figsize=(16, 8))
ax = plt.subplot(projection=ccrs.PlateCarree())
ds.plot(ax=ax)
gdf.plot(ax=ax)
I am trying to plot one dependent variable vs two independent variables using matplotlibs heatmap feature, however, I cannot get the image to display correctly. Code and image below.
plt.xticks(np.arange(0, .015, .0015))
plt.yticks(np.arange(-.0005, .0005, .00005))
plt.scatter(Dataset.Gate, Dataset.Bias, c = Dataset.Current)
The method plt.hist() in pyplot has a way to create a 'step-like' plot style when calling
plt.hist(data, histtype='step')
but the 'ordinary' methods that plot raw data without processing (plt.plot(), plt.scatter(), etc.) apparently do not have style options to obtain the same result. My goal is to plot a given set of points using that style, without making histogram of these points.
Is that achievable with standard library methods for plotting a given 2-D set of points?
I also think that there is at least one hack (generating a fake distribution which would have histogram equal to our data) and a 'low-level' solution to draw each segment manually, but none of these ways seems favorable.
Maybe you are looking for drawstyle="steps".
import numpy as np; np.random.seed(42)
import matplotlib.pyplot as plt
data = np.cumsum(np.random.randn(10))
plt.plot(data, drawstyle="steps")
plt.show()
Note that this is slightly different from histograms, because the lines do not go to zero at the ends.
I'm trying to make a grid in ggplot to plot 4 graphs, as if it were a basic pair (mfrow = c (2,2)). However, I can not execute the code. I have already tried with gridExtra and cowplot with the functions plot_grid, grid.arrange, ggplot2.multiplot and also tried with the multiplot function. The error that appears is as follows:
Error: Aesthetics must be either length 1 or the same as the data (8598): alpha, x, y, group
gridExtra::grid.arrange(ggplot(),ggplot(),ggplot(),ggplot(), nrow=2)
produces
you may want to debug your code for each individual plot first.
Plots is simple and powerful but sometimes I would like to have a little bit more control over individual elements of the plot to fine-tune its appearance.
Is it possible to update the plot object of the backend directly?
E.g., for the default pyplot backend, I tried
using Plots
p = plot(sin)
p.o[:axes][1][:xaxis][:set_ticks_position]("top")
but the plot does not change. Calling p.o[:show]() afterwards does not help, either.
In other words: Is there a way to use the PyPlot interface for a plot that was initially created with Plots?
Edit:
The changes to the PyPlot object become visible (also in the gui) when saving the figure:
using Plots
using PyPlot
p = Plots.plot(sin, top_margin=1cm)
gui() # not needed when using the REPL
gca()[:xaxis][:set_ticks_position]("top")
PyPlot.savefig("test.png")
Here, I used p.o[:axes][1] == gca(). One has to set top_margin=1cm because the plot area is not adjusted automatically (for my actual fine-tuning, this doesn't matter).
This also works for subsequent updates as long as only the PyPlot interface is used. E.g., after the following commands, the plot will have a red right border in addition to labels at the top:
gca()[:spines]["right"][:set_color]("red")
PyPlot.savefig("test.png")
However, when a Plots command like plot!(xlabel="foo") is used, all previous changes made with PyPlot are overwritten (which is not suprising).
The remaining question is how to update the gui interactively without having to call PyPlot.savefig explicitly.
No - the plot is a Plots object, not a PyPlot object. In your specific example you can do plot(sin, xmirror = true).
I'm trying to do the same but didn't find a solution to update an existing plot. But here is a partial answer: you can query information from the PyPlot axes object
julia> Plots.plot(sin, 1:4)
julia> Plots.PyPlot.plt[:xlim]()
(1.0,4.0)
julia> Plots.plot(sin, 20:24)
julia> ax = Plots.PyPlot.plt[:xlim]()
(20.0,24.0)
and it gets updated.