How to execute a program with Kotlin and Arrow - kotlin

I'm trying to learn a bit of Functional Programming using Kotlin and Arrow and in this way I've already read some blogposts like the following one: https://jorgecastillo.dev/kotlin-fp-1-monad-stack, which is good, I've understand the main idea, but when creating a program, I can't figure out how to run it.
Let me be more explicit:
I have the following piece of code:
typealias EitherIO<A, B> = EitherT<ForIO, A, B>
sealed class UserError(
val message: String,
val status: Int
) {
object AuthenticationError : UserError(HttpStatus.UNAUTHORIZED.reasonPhrase, HttpStatus.UNAUTHORIZED.value())
object UserNotFound : UserError(HttpStatus.NOT_FOUND.reasonPhrase, HttpStatus.NOT_FOUND.value())
object InternalServerError : UserError(HttpStatus.INTERNAL_SERVER_ERROR.reasonPhrase, HttpStatus.INTERNAL_SERVER_ERROR.value())
}
#Component
class UserAdapter(
private val myAccountClient: MyAccountClient
) {
#Lazy
#Inject
lateinit var subscriberRepository: SubscriberRepository
fun getDomainUser(ssoId: Long): EitherIO<UserError, User?> {
val io = IO.fx {
val userResource = getUserResourcesBySsoId(ssoId, myAccountClient).bind()
userResource.fold(
{ error -> Either.Left(error) },
{ success ->
Either.right(composeDomainUserWithSubscribers(success, getSubscribersForUserResource(success, subscriberRepository).bind()))
})
}
return EitherIO(io)
}
fun composeDomainUserWithSubscribers(userResource: UserResource, subscribers: Option<Subscribers>): User? {
return subscribers.map { userResource.toDomainUser(it) }.orNull()
}
}
private fun getSubscribersForUserResource(userResource: UserResource, subscriberRepository: SubscriberRepository): IO<Option<Subscribers>> {
return IO {
val msisdnList = userResource.getMsisdnList()
Option.invoke(subscriberRepository.findAllByMsisdnInAndDeletedIsFalse(msisdnList).associateBy(Subscriber::msisdn))
}
}
private fun getUserResourcesBySsoId(ssoId: Long, myAccountClient: MyAccountClient): IO<Either<UserError, UserResource>> {
return IO {
val response = myAccountClient.getUserBySsoId(ssoId)
if (response.isSuccessful) {
val userResource = JacksonUtils.fromJsonToObject(response.body()?.string()!!, UserResource::class.java)
Either.Right(userResource)
} else {
when (response.code()) {
401 -> Either.Left(UserError.AuthenticationError)
404 -> Either.Left(UserError.UserNotFound)
else -> Either.Left(UserError.InternalServerError)
}
}
}.handleError { Either.Left(UserError.InternalServerError) }
}
which, as you can see is accumulating some results into an IO monad. I should run this program using unsafeRunSync() from arrow, but on javadoc it's stated the following: **NOTE** this function is intended for testing, it should never appear in your mainline production code!.
I should mention that I know about unsafeRunAsync, but in my case I want to be synchronous.
Thanks!

Instead of running unsafeRunSync, you should favor unsafeRunAsync.
If you have myFun(): IO<A> and want to run this, then you call myFun().unsafeRunAsync(cb) where cb: (Either<Throwable, A>) -> Unit.
For instance, if your function returns IO<List<Int>> then you can call
myFun().unsafeRunAsync { /* it (Either<Throwable, List<Int>>) -> */
it.fold(
{ Log.e("Foo", "Error! $it") },
{ println(it) })
}
This will run the program contained in the IO asynchronously and pass the result safely to the callback, which will log an error if the IO threw, and otherwise it will print the list of integers.
You should avoid unsafeRunSync for a number of reasons, discussed here. It's blocking, it can cause crashes, it can cause deadlocks, and it can halt your application.
If you really want to run your IO as a blocking computation, then you can precede this with attempt() to have your IO<A> become an IO<Either<Throwable, A>> similar to the unsafeRunAsync callback parameter. At least then you won't crash.
But unsafeRunAsync is preferred. Also, make sure your callback passed to unsafeRunAsync won't throw any errors, at it's assumed it won't. Docs.

Related

Issue IDE warning if annotated member is not surrounded with a particular block

I have a data structure which has members that are not thread safe and the caller needs to lock the resource for reading and writing as appropriate. Here's a minimal code sample:
class ExampleResource : LockableProjectItem {
override val readWriteLock: ReadWriteLock = ReentrantReadWriteLock()
#RequiresReadLock
val nonThreadSafeMember: String = ""
}
interface LockableProjectItem {
val readWriteLock: ReadWriteLock
}
fun <T : LockableProjectItem, Out> T.readLock(block: T.() -> Out): Out {
try {
readWriteLock.readLock().lock()
return block(this)
} finally {
readWriteLock.readLock().unlock()
}
}
fun <T : LockableProjectItem, Out> T.writeLock(block: T.() -> Out): Out {
try {
readWriteLock.writeLock().lock()
return block(this)
} finally {
readWriteLock.writeLock().unlock()
}
}
annotation class RequiresReadLock
A call ExampleResource.nonThreadSafeMember might then look like this:
val resource = ExampleResource()
val readResult = resource.readLock { nonThreadSafeMember }
To make sure that the caller is aware that the resource needs to be locked, I would like the IDE to issue a warning for any members that are annotated with #RequiresReadLock and are not surrounded with a readLock block. Is there any way to do this in IntelliJ without writing a custom plugin for the IDE?
I think this is sort of a hack, but using context receivers might work. I don't think they are intended to be used in this way though.
You can declare a dummy object to act as the context receiver, and add that as a context receiver to the property:
object ReadLock
class ExampleResource : LockableProjectItem {
override val readWriteLock: ReadWriteLock = ReentrantReadWriteLock()
// properties with context receivers cannot have a backing field, so we need to explicitly declare this
private val nonThreadSafeMemberField: String = ""
context(ReadLock)
val nonThreadSafeMember: String
get() = nonThreadSafeMemberField
}
Then in readLock, you pass the object:
fun <T : LockableProjectItem, Out> T.readLock(block: context(ReadLock) T.() -> Out): Out {
try {
readWriteLock.readLock().lock()
return block(ReadLock, this)
} finally {
readWriteLock.readLock().unlock()
}
}
Notes:
This will give you an error if you try to access nonThreadSafeMember without the context receiver:
val resource = ExampleResource()
val readResult = resource.nonThreadSafeMember //error
You can still access nonThreadSafeMember without acquiring a read lock by doing e.g.
with(ReadLock) { // with(ReadLock) doesn't acquire the lock, just gets the context receiver
resource.nonThreadSafeMember // no error
}
But it's way harder to accidentally write something like this, which I think is what you are trying to prevent.
If you call another function inside readLock, and you want to access nonThreadSafeMember inside that function, you should mark that function with context(ReadLock) too. e.g.
fun main() {
val resource = ExampleResource()
val readResult = resource.readLock {
foo(this)
}
}
context(ReadLock)
fun foo(x: ExampleResource) {
x.nonThreadSafeMember
}
The context receiver is propagated through.

Closing (Auto)Closeables that exist only in `Either`

I currently face the problem of correctly closing resources that never leave their containing Either.
The relevant code looks something like this:
object SomeError
class MyRes : AutoCloseable { [...] }
fun createRes(): Either<SomeError, MyRes> { [...] }
fun extractData(res: MyRes): String { [...] }
fun theProblem(): Either<SomeError, String> {
return createRes()
.map { extractData(it) }
}
What is the most idiomatic way of closing the created MyRes? Closing it before that map prevents extractData from accessing it, and after the map I can't access it anymore via Either's operations. Closing it in extractData severely limits composability.
Currently I have an external List<AutoCloseable> that I iterate over after all the computations, but that can't be the intended way.
I am open to using Arrow Fx (e.g. Resource) if that helps, but I haven't found anything on how to combine Either and Resource in an elegant way.
It's possible to combine the either and Resource safely.
object SomeError
class MyRes : AutoCloseable { [...] }
fun createRes(): Resource<Either<SomeError, MyRes>> { [...] }
fun extractData(res: MyRes): String { [...] }
suspend fun solution(): Either<SomeError, String> = either {
createRes().use { either: Either<SomeError, MyRes> ->
val res = either.bind()
val string = extractData(res)
// call other Either code + `bind()` safely here
[...]
} // <-- MyRes will automatically close here
}
If in this code you encounter Either.Left and you call bind() on it the Resource will first close, because we jump outside of use, and then either will return the encountered Either.Left.
One possible solution I found was wrapping the block passed to map:
fun <B : AutoCloseable, C> andClose(f: (B) -> C): (B) -> C =
{ b: B -> b.use { f(b) } }
fun theProblemSlightlySolved(): Either<SomeError, String> {
return createRes()
.map(andClose { extractData(it) })
}

rxjava, how to inspect the result of a Single

using kotlin, having code
fun fetchRemoteDataApi(): Single<RemoteDataResponse> = networkApi.getData()
// it is just a retrofit
#GET(".../api/getData")
fun getData() : Single<RemoteDataResponse>
fun mergeApiWithDb(): Completable = fetchRemoteDataApi()
.zipWith(localDao.getAll())
.flatMapCompletable { (remoteData, localData) ->
doMerge(remoteData, localData) //<== return a Completable
}
the code flow:
val mergeApiDbCall = mergeApiWithDb().onErrorComplete().cache() //<=== would like do some inspection at this level
PublishSubject.create<Unit>().toFlowable(BackpressureStrategy.LATEST)
.compose(Transformers.flowableIO())
.switchMap {
//merge DB with api, or local default value first then listen to DB change
mergeApiDbCall.andThen(listAllTopics())
.concatMapSingle { topics -> remoteTopicUsers.map { topics to it } }
}
.flatMapCompletable { (topics, user) ->
// do something return Completable
}
.subscribe({
...
}, { throwable ->
...
})
and when making the call
val mergeApiDbCall = mergeApiWithDb().onErrorComplete().cache()
the question is if would like to inspect on the Singles<RemoteDataResponse> returned from fetchRemoteDataApi() (i.e. using Log.i(...) to printout the content of RemoteDataResponse, etc.), either in got error or success case, how to do it?
/// the functions
fun listAllTopics(): Flowable<List<String>> = localRepoDao.getAllTopics()
// which a DAO:
#Query("SELECT topic FROM RemoteDataTable WHERE read = 1")
fun getAllTopics(): Flowable<List<String>>
///
private val remoteTopicUsers: Single<List<User>>
get() {
return Single.create {
networkApi.getTopicUsers(object : ICallback.IGetTopicUsersCallback {
override fun onSuccess(result: List<User>) = it.onSuccess(result)
override fun onError(errorCode: Int, errorMsg: String?) = it.onError(Exception(errorCode, errorMsg))
})
}
}
You cannot extract information about elements from the Completable. Though you can use doOnComplete() on Completable, it will not provide you any information about the element.
You can inspect elements if you call doOnSuccess() on your Single, so you need to incorporate this call earlier in your code. To inspect errors you can use doOnError() on both Completable or Single.

Access ApplicationCall in object without propagation

Is there a thread-safe method in Ktor where it is possible to statically access the current ApplicationCall? I am trying to get the following simple example to work;
object Main {
fun start() {
val server = embeddedServer(Jetty, 8081) {
intercept(ApplicationCallPipeline.Call) {
// START: this will be more dynamic in the future, we don't want to pass ApplicationCall
Addon.processRequest()
// END: this will be more dynamic in the future, we don't want to pass ApplicationCall
call.respondText(output, ContentType.Text.Html, HttpStatusCode.OK)
return#intercept finish()
}
}
server.start(wait = true)
}
}
fun main(args: Array<String>) {
Main.start();
}
object Addon {
fun processRequest() {
val call = RequestUtils.getCurrentApplicationCall()
// processing of call.request.queryParameters
// ...
}
}
object RequestUtils {
fun getCurrentApplicationCall(): ApplicationCall {
// Here is where I am getting lost..
return null
}
}
I would like to be able to get the ApplicationCall for the current context to be available statically from the RequestUtils so that I can access information about the request anywhere. This of course needs to scale to be able to handle multiple requests at the same time.
I have done some experiments with dependency inject and ThreadLocal, but to no success.
Well, the application call is passed to a coroutine, so it's really dangerous to try and get it "statically", because all requests are treated in a concurrent context.
Kotlin official documentation talks about Thread-local in the context of coroutine executions. It uses the concept of CoroutineContext to restore Thread-Local values in specific/custom coroutine context.
However, if you are able to design a fully asynchronous API, you will be able to bypass thread-locals by directly creating a custom CoroutineContext, embedding the request call.
EDIT: I've updated my example code to test 2 flavors:
async endpoint: Solution fully based on Coroutine contexts and suspend functions
blocking endpoint: Uses a thread-local to store application call, as referred in kotlin doc.
import io.ktor.server.engine.embeddedServer
import io.ktor.server.jetty.Jetty
import io.ktor.application.*
import io.ktor.http.ContentType
import io.ktor.http.HttpStatusCode
import io.ktor.response.respondText
import io.ktor.routing.get
import io.ktor.routing.routing
import kotlinx.coroutines.asContextElement
import kotlinx.coroutines.launch
import kotlin.coroutines.AbstractCoroutineContextElement
import kotlin.coroutines.CoroutineContext
import kotlin.coroutines.coroutineContext
/**
* Thread local in which you'll inject application call.
*/
private val localCall : ThreadLocal<ApplicationCall> = ThreadLocal();
object Main {
fun start() {
val server = embeddedServer(Jetty, 8081) {
routing {
// Solution requiring full coroutine/ supendable execution.
get("/async") {
// Ktor will launch this block of code in a coroutine, so you can create a subroutine with
// an overloaded context providing needed information.
launch(coroutineContext + ApplicationCallContext(call)) {
PrintQuery.processAsync()
}
}
// Solution based on Thread-Local, not requiring suspending functions
get("/blocking") {
launch (coroutineContext + localCall.asContextElement(value = call)) {
PrintQuery.processBlocking()
}
}
}
intercept(ApplicationCallPipeline.ApplicationPhase.Call) {
call.respondText("Hé ho", ContentType.Text.Plain, HttpStatusCode.OK)
}
}
server.start(wait = true)
}
}
fun main() {
Main.start();
}
interface AsyncAddon {
/**
* Asynchronicity propagates in order to properly access coroutine execution information
*/
suspend fun processAsync();
}
interface BlockingAddon {
fun processBlocking();
}
object PrintQuery : AsyncAddon, BlockingAddon {
override suspend fun processAsync() = processRequest("async", fetchCurrentCallFromCoroutineContext())
override fun processBlocking() = processRequest("blocking", fetchCurrentCallFromThreadLocal())
private fun processRequest(prefix : String, call : ApplicationCall?) {
println("$prefix -> Query parameter: ${call?.parameters?.get("q") ?: "NONE"}")
}
}
/**
* Custom coroutine context allow to provide information about request execution.
*/
private class ApplicationCallContext(val call : ApplicationCall) : AbstractCoroutineContextElement(Key) {
companion object Key : CoroutineContext.Key<ApplicationCallContext>
}
/**
* This is your RequestUtils rewritten as a first-order function. It defines as asynchronous.
* If not, you won't be able to access coroutineContext.
*/
suspend fun fetchCurrentCallFromCoroutineContext(): ApplicationCall? {
// Here is where I am getting lost..
return coroutineContext.get(ApplicationCallContext.Key)?.call
}
fun fetchCurrentCallFromThreadLocal() : ApplicationCall? {
return localCall.get()
}
You can test it in your navigator:
http://localhost:8081/blocking?q=test1
http://localhost:8081/blocking?q=test2
http://localhost:8081/async?q=test3
server log output:
blocking -> Query parameter: test1
blocking -> Query parameter: test2
async -> Query parameter: test3
The key mechanism you want to use for this is the CoroutineContext. This is the place that you can set key value pairs to be used in any child coroutine or suspending function call.
I will try to lay out an example.
First, let us define a CoroutineContextElement that will let us add an ApplicationCall to the CoroutineContext.
class ApplicationCallElement(var call: ApplicationCall?) : AbstractCoroutineContextElement(ApplicationCallElement) {
companion object Key : CoroutineContext.Key<ApplicationCallElement>
}
Now we can define some helpers that will add the ApplicationCall on one of our routes. (This could be done as some sort of Ktor plugin that listens to the pipeline, but I don't want to add to much noise here).
suspend fun PipelineContext<Unit, ApplicationCall>.withCall(
bodyOfCall: suspend PipelineContext<Unit, ApplicationCall>.() -> Unit
) {
val pipeline = this
val appCallContext = buildAppCallContext(this.call)
withContext(appCallContext) {
pipeline.bodyOfCall()
}
}
internal suspend fun buildAppCallContext(call: ApplicationCall): CoroutineContext {
var context = coroutineContext
val callElement = ApplicationCallElement(call)
context = context.plus(callElement)
return context
}
And then we can use it all together like in this test case below where we are able to get the call from a nested suspending function:
suspend fun getSomethingFromCall(): String {
val call = coroutineContext[ApplicationCallElement.Key]?.call ?: throw Exception("Element not set")
return call.parameters["key"] ?: throw Exception("Parameter not set")
}
fun Application.myApp() {
routing {
route("/foo") {
get {
withCall {
call.respondText(getSomethingFromCall())
}
}
}
}
}
class ApplicationCallTest {
#Test
fun `we can get the application call in a nested function`() {
withTestApplication({ myApp() }) {
with(handleRequest(HttpMethod.Get, "/foo?key=bar")) {
assertEquals(HttpStatusCode.OK, response.status())
assertEquals("bar", response.content)
}
}
}
}

How To await a function call?

So I have some asynchronous operations happening, I can create some lambada, call a function and pass that value to them. But what i want is not to have the result of the operation as a parameter, I want to return them.
As a example, I have a class A with some listeners, if there is a result all listeners are notified. So basically the asyncFunction should return a result if there is one otherwise be suspended.
object A {
val listeners = mutableListOf<(Int) -> Unit>()
fun onResult(value: Int) {
listeners.forEach { it(value) }
}
}
fun asyncFunction(): Deferred<Int> {
return async {
A.listeners.add({ result ->
})
return result
}
}
What I'm thinking right now (maybe I'm completely on the wrong track), is to have something like a Deferred, to which i can send the result and it returns. Is there something like that? Can I implement a Deffered myself?
class A {
private val awaiter: ??? // can this be a Deferred ?
fun onResult(result: Int) {
awaiter.putResult(result)
}
fun awaitResult(): Int {
return awaiter.await()
}
}
val a = A()
launch {
val result = a.awaitResult()
}
launch {
a.onResult(42)
}
So I do know that with callbacks this can be handled but it would be cleaner and easier to have it that way.
I hope there is a nice and clean solution im just missing.
Your asyncFunction should in fact be a suspendable function:
suspend fun suspendFunction(): Int =
suspendCoroutine { cont -> A.listeners.add { cont.resume(it) } }
Note that it returns the Int result and suspends until it's available.
However, this is just a fix for your immediate problem. It will still malfunction in many ways:
the listener's purpose is served as soon as it gets the first result, but it stays in the listener list forever, resulting in a memory leak
if the result arrived before you called suspendFunction, it will miss it and hang.
You can keep improving it manually (it's a good way to learn) or switch to a solid solution provided by the standard library. The library solution is CompletableDeferred:
object A {
val result = CompletableDeferred<Int>()
fun provideResult(r: Int) {
result.complete(r)
}
}
suspend fun suspendFunction(): Int = A.result.await()