I have an integer array like this:
in=[1, 2, 6, 1, 3, 2, 1]
I would like to calculate a running index for the equal values in the array. For the matrix above the output would be:
out=[0, 0, 0, 1, 0, 1, 2]
So the naive implementation would be to have a counter for all the values. I would like to have a vectorized solution to run it with tensorflow, perhaps with numpy.
I already thought of creating a 2D tensor of shape=(in.shape[0], tf.max(in), ) and writing 1 to the tensor[i, in[i]] cell, and then call a cumsum column-wise, then writing back row-wise. But my input array is quite big (with several 100k entries) with the maximum value of ~500k, thus this sparse matrix wouldn't even fit into the memory.
Do you have better suggestions? Thank you!
Here's a pandas solution:
s = pd.Series([1, 2, 6, 1, 3, 2, 1])
s.groupby(s).cumcount().values
Output:
array([0, 0, 0, 1, 0, 1, 2], dtype=int64)
Test on similar sized data:
s = pd.Series(np.random.randint(0,500000, 100000))
%timeit -n 100 s.groupby(s).cumcount().values
# 23.9 ms ± 562 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
You can use an actual sparse matrix, i.e. use sparse storage. With that an input like a = np.random.randint(0,5*10**5,10**6) is no problem:
import numpy as np
from scipy import sparse
def running(a):
n,m = a.size,a.max()+1
aux = sparse.csr_matrix((np.ones_like(a),a,np.arange(n+1)),(n,m)).tocsc()
msk = aux.indptr[1:] != aux.indptr[:-1]
indptr = aux.indptr[:-1][msk]
aux.data[0] = 0
aux.data[indptr[1:]] -= np.diff(indptr)
out = np.empty_like(a)
out[aux.indices] = aux.data.cumsum()
return out
# alternative method for validation
def use_argsort(a):
indices = a.argsort(kind="stable")
ao = a[indices]
indptr = np.concatenate([[0],(ao[1:] != ao[:-1]).nonzero()[0]+1])
data = np.ones_like(a)
data[0] = 0
data[indptr[1:]] -= np.diff(indptr)
out = np.empty_like(a)
out[indices] = data.cumsum()
return out
in_ = np.array([1, 2, 6, 1, 3, 2, 1])
print("OP example",in_,"->",running(in_))
print("second opinion","->",use_argsort(in_))
from timeit import timeit
A = np.random.randint(0,500_000,1_000_000)
print("large example (500k labels, 1M entries) takes",
timeit(lambda:running(A),number=10)*100,"ms")
print("using other method takes",
timeit(lambda:use_argsort(A),number=10)*100,"ms")
print("same result:",(use_argsort(A) == running(A)).all())
Sample run:
OP example [1 2 6 1 3 2 1] -> [0 0 0 1 0 1 2]
second opinion -> [0 0 0 1 0 1 2]
large example (500k labels, 1M entries) takes 84.1427305014804 ms
using other method takes 262.38483290653676 ms
same result: True
Related
My goal is to get joint probability (here we use count for example) matrix from data samples. Now I can get the expected result, but I'm wondering how to optimize it. Here is my implementation:
def Fill2DCountTable(arraysList):
'''
:param arraysList: List of arrays, length=2
each array is of shape (k, sampleSize),
k == 1 (or None. numpy will align it) if it's single variable
else k for a set of variables of size k
:return: xyJointCounts, xMarginalCounts, yMarginalCounts
'''
jointUniques, jointCounts = np.unique(np.vstack(arraysList), axis=1, return_counts=True)
_, xReverseIndexs = np.unique(jointUniques[[0]], axis=1, return_inverse=True) ###HIGHLIGHT###
_, yReverseIndexs = np.unique(jointUniques[[1]], axis=1, return_inverse=True)
xyJointCounts = np.zeros((xReverseIndexs.max() + 1, yReverseIndexs.max() + 1), dtype=np.int32)
xyJointCounts[tuple(np.vstack([xReverseIndexs, yReverseIndexs]))] = jointCounts
xMarginalCounts = np.sum(xyJointCounts, axis=1) ###HIGHLIGHT###
yMarginalCounts = np.sum(xyJointCounts, axis=0)
return xyJointCounts, xMarginalCounts, yMarginalCounts
def Fill3DCountTable(arraysList):
# :param arraysList: List of arrays, length=3
jointUniques, jointCounts = np.unique(np.vstack(arraysList), axis=1, return_counts=True)
_, xReverseIndexs = np.unique(jointUniques[[0]], axis=1, return_inverse=True)
_, yReverseIndexs = np.unique(jointUniques[[1]], axis=1, return_inverse=True)
_, SReverseIndexs = np.unique(jointUniques[2:], axis=1, return_inverse=True)
SxyJointCounts = np.zeros((SReverseIndexs.max() + 1, xReverseIndexs.max() + 1, yReverseIndexs.max() + 1), dtype=np.int32)
SxyJointCounts[tuple(np.vstack([SReverseIndexs, xReverseIndexs, yReverseIndexs]))] = jointCounts
SMarginalCounts = np.sum(SxyJointCounts, axis=(1, 2))
SxJointCounts = np.sum(SxyJointCounts, axis=2)
SyJointCounts = np.sum(SxyJointCounts, axis=1)
return SxyJointCounts, SMarginalCounts, SxJointCounts, SyJointCounts
My use scenario is to do conditional independence test over variables. SampleSize is usually quite big (~10k) and each variable's categorical cardinality is relatively small (~10). I still find the speed not satisfying.
How to best optimize this code, or even logic outside the code? I may have some thoughts:
The ###HIGHLIGHT### lines. On a single X I may calculate (X;Y1), (Y2;X), (X;Y3|S1)... for many times, so what if I save cache variable's (and conditional set's) {uniqueValue: reversedIndex} dictionary and its marginal count, and then directly get marginalCounts (no need to sum) and replace to get reverseIndexs (no need to unique).
How to further use matrix parallelization to do CITest in batch, i.e. calculate (X;Y|S1), (X;Y|S2), (X;Y|S3)... simultaneously?
Will torch be faster than numpy, on same CPU? Or on GPU?
It's an open question. Thank you for any possible ideas. Big thanks for your help :)
================== A test example is as follows ==================
xs = np.array( [2, 4, 2, 3, 3, 1, 3, 1, 2, 1] )
ys = np.array( [5, 5, 5, 4, 4, 4, 4, 4, 6, 5] )
Ss = np.array([ [1, 0, 0, 0, 1, 0, 0, 0, 1, 1],
[1, 1, 1, 0, 1, 0, 1, 0, 1, 0] ])
xyJointCounts, xMarginalCounts, yMarginalCounts = Fill2DCountTable([xs, ys])
SxyJointCounts, SMarginalCounts, SxJointCounts, SyJointCounts = Fill3DCountTable([xs, ys, Ss])
get 2D from (X;Y): xMarginalCounts=[3 3 3 1], yMarginalCounts=[5 4 1], and xyJointCounts (added axes name FYI):
xy| 4 5 6
--|-------
1 | 2 1 1
2 | 0 2 1
3 | 3 0 0
4 | 0 1 0
get 3D from (X;Y|{Z1,Z2}): SxyJointCounts is of shape 4x4x3, where the first 4 means the cardinality of {Z1,Z2} (00, 01, 10, 11 with respective SMarginalCounts=[3 3 1 3]). SxJointCounts is of shape 4x4 and SyJointCounts is of shape 4x3.
I have numpy array like this a = [-- -- -- 1.90 2.91 1.91 2.92]
I need to find % of values more than 2, so here it is 50%.
How to get the same in easy way? also, why len(a) gives 7 (instead of 4)?
Try this:
import numpy as np
import numpy.ma as ma
a = ma.array([0, 1, 2, 1.90, 2.91, 1.91, 2.92])
for i in range(3):
a[i] = ma.masked
print(a)
print(np.sum(a>2)/((len(a) - ma.count_masked(a))))
The last line prints 0.5 which is your 50%. It subtracted from the total length of your array (7) the number of masked elements (3) which you see as the three "--" in the output you posted.
Generally speaking, you can simply use
a = np.array([...])
threshold = 2.0
fraction_higher = (a > threshold).sum() / len(a) # in [0, 1)
percentage_higher = fraction_higher * 100
The array contains 7 elements, being 3 of them masked. This code emulates the test case, generating a masked array as well:
# generate the test case: a masked array
a = np.ma.array([-1, -1, -1, 1.90, 2.91, 1.91, 2.92], mask=[1, 1, 1, 0, 0, 0, 0])
# check its format
print(a)
[-- -- -- 1.9 2.91 1.91 2.92]
#print the output
print(a[a>2].count() / a.count())
0.5
I would like to convert an array with many dimensions (more than 2) into a 2D array where other dimensions would be converted to nested stand-alone arrays.
So if I have an array like numpy.arange(3 * 4 * 5 * 5 * 5).reshape((3, 4, 5, 5, 5)), I would like to convert it to an array of shape (3, 4), where each element would be an array of shape (5, 5, 5). The dtype of the outer array would be object.
For example, for np.arange(8).reshape((1, 1, 2, 2, 2)), the output would be equivalent to:
a = np.ndarray(shape=(1,1), dtype=object)
a[0, 0] = np.arange(8).reshape((1, 1, 2, 2, 2))[0, 0, :, :, :]
How can I do this efficiently?
We can reshape and assign elements from the regular array into the output object dtype array in a single loop that seems to be a tad faster than with two loops, like so -
def reshape_approach(a):
m,n = a.shape[:2]
a.shape = (m*n,) + a.shape[2:]
out = np.empty((m*n),dtype=object)
for i in range(m*n):
out[i] = a[i]
out.shape = (m,n)
a.shape = (m,n) + a.shape[1:]
return out
Runtime test
Other approach(es) -
# #Scotty1-'s soln
def simply_assign(a):
m,n = a.shape[:2]
out = np.empty((m,n),dtype=object)
for i in range(m):
for j in range(n):
out[i,j] = a[i,j]
return out
Timings -
In [154]: m,n = 300,400
...: a = np.arange(m * n * 5 * 5 * 5).reshape((m,n, 5, 5, 5))
In [155]: %timeit simply_assign(a)
10 loops, best of 3: 39.4 ms per loop
In [156]: %timeit reshape_approach(a)
10 loops, best of 3: 32.9 ms per loop
With 7D data -
In [160]: m,n,p,q = 30,40,30,40
...: a = np.arange(m * n *p * q * 5 * 5 * 5).reshape((m,n,p,q, 5, 5, 5))
In [161]: %timeit simply_assign(a)
1000 loops, best of 3: 421 µs per loop
In [162]: %timeit reshape_approach(a)
1000 loops, best of 3: 316 µs per loop
Thanks for your hint Mitar. This is how it should look like using dtype=np.object arrays:
outer_array = np.empty((x.shape[0], x.shape[1]), dtype=np.object)
for i in range(x.shape[0]):
for j in range(x.shape[1]):
outer_array[i, j] = x[i, j]
Looping may not be the most efficient way to do it, but there is afaik no vectorized operation for this task.
(Using some more reshaping, this should be even faster than Divakar's solution: ;)) ---> No, Divakar is faster.... Nice solution Divakar!
def advanced_reshape_solution(x):
m, n = x.shape[:2]
sub_arr_size = np.prod(x.shape[2:])
out_array = np.empty((m * n), dtype=object)
x_flat_view = x.reshape(-1)
for i in range(m*n):
out_array[i] = x_flat_view[i * sub_arr_size:(i + 1) * sub_arr_size].reshape(x.shape[2:])
return out_array.reshape((m, n))
I have a bytearray that is pulled from redis.
r.set('a', '')
r.setbit('a', 0, 1)
r.setbit('a', 1, 1)
r.setbit('a', 12, 1)
a_raw = db.get('a')
# b'\xc0\x08'
a_bin = bin(int.from_bytes(a, byteorder="big"))
# 0b1100000000001000
I want to use that bytearray to select rows from an ndarray.
arr = np.arange(12)
arr[a_raw]
# array([0, 1, 12])
Edit Both solutions work, but I found #paul-panzer's to be faster
import timeit
setup = '''import numpy as np; a = b'\\xc0\\x08'; '''
t1 = timeit.timeit('idx = np.unpackbits(np.frombuffer(a, np.uint8)); np.where(idx)',
setup = setup, number=10000)
t2 = timeit.timeit('idx = np.array(list(bin(int.from_bytes(a, byteorder="big"))[2:])) == "1"; np.where(idx)',
setup = setup, number=10000)
print(t1, t2)
#0.019560601096600294 0.054518797900527716
Edit 2 Actually, the from_bytes method doesn't return what I'm looking for:
redis_db.delete('timeit_test')
redis_db.setbit('timeit_test', 12666, 1)
redis_db.setbit('timeit_test', 14379, 1)
by = redis_db.get('timeit_test')
idx = np.unpackbits(np.frombuffer(by, np.uint8))
indices = np.where(idx)
idx = np.array(list(bin(int.from_bytes(by, byteorder="big"))[2:])) == "1"
indices_2 = np.where(idx)
print(indices, indices_2)
#(array([12666, 14379]),) (array([ 1, 1714]),)
Here is a way using unpackbits:
>>> a = b'\xc0\x08'
>>> b = np.arange(32).reshape(16, 2)
>>> c = np.arange(40).reshape(20, 2)
>>>
>>> idx = np.unpackbits(np.frombuffer(a, np.uint8))
>>>
# if the sizes match boolen indexing can be used
>>> b[idx.view(bool)]
array([[ 0, 1],
[ 2, 3],
[24, 25]])
>>>
# non matching sizes can be worked around using where
>>> c[np.where(idx)]
array([[ 0, 1],
[ 2, 3],
[24, 25]])
>>>
Here's one way:
In [57]: b = 0b1100000000001000
In [58]: mask = np.array(list(bin(b)[2:])) == '1'
In [59]: arr = np.arange(13)
In [60]: arr[mask[:len(arr)]]
Out[60]: array([ 0, 1, 12])
Additionally it's a simple check to demonstrate that the __getitem__ implementation for ndarray does not support indexing directly on a bytes object:
In [61]: by = b'\xc0\x08'
In [62]: arr[by]
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-111-6cd68003b176> in <module>()
----> 1 arr[by]
IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`)
and integer or boolean arrays are valid indices
So unless you subclass ndarray or create an extension module with customized __getitem__ behavior, there is no way to do it directly from the bytes, and you must convert the bytes into a boolean mask based on bitwise conditions.
Here's an example comparing the timing for a few different approaches that work directly from the original bytes object:
In [171]: %timeit np.array(list(bin(int.from_bytes(by, byteorder='big'))[2:])) == '1'
3.51 µs ± 38 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [172]: %timeit np.unpackbits(np.frombuffer(by, np.uint8))
2.05 µs ± 29.59 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [173]: %timeit np.array(list(bin(struct.unpack('>H', by)[0])[2:])) == '1'
2.65 µs ± 6.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
I've following code which seems to be performance bottleneck:
for x, y, intensity in myarr:
target_map[x, y] = target_map[x,y] + intensity
There are multiple coordinates for same coordinate with variable intensity.
Datatypes:
> print myarr.shape, myarr.dtype
(219929, 3) uint32
> print target_map.shape, target_map.dtype
(150, 200) uint32
Is there any way to optimize this loop, other than writing it in C?
This seems to be related question, how ever I couldn't get the accepted answer working for me: How to convert python list of points to numpy image array?
I get following error message:
Traceback (most recent call last):
File "<pyshell#38>", line 1, in <module>
image[coordinates] = 1
IndexError: too many indices for array
If you convert your 2D coordinates into target_map into flat indices into it using np.ravel_multi_index, you can use np.unique and np.bincount to speed things up quite a bit:
def vec_intensity(my_arr, target_map) :
flat_coords = np.ravel_multi_index((my_arr[:, 0], my_arr[:, 1]),
dims=target_map.shape)
unique_, idx = np.unique(flat_coords, return_inverse=True)
sum_ = np.bincount(idx, weights=my_arr[:, 2])
target_map.ravel()[unique_] += sum_
return target_map
def intensity(my_arr, target_map) :
for x, y, intensity in myarr:
target_map[x, y] += intensity
return target_map
#sample data set
rows, cols = 150, 200
items = 219929
myarr = np.empty((items, 3), dtype=np.uint32)
myarr[:, 0] = np.random.randint(rows, size=(items,))
myarr[:, 1] = np.random.randint(cols, size=(items,))
myarr[:, 2] = np.random.randint(100, size=(items,))
And now:
In [6]: %timeit target_map_1 = np.zeros((rows, cols), dtype=np.uint32); target_map_1 = vec_intensity(myarr, target_map_1)
10 loops, best of 3: 53.1 ms per loop
In [7]: %timeit target_map_2 = np.zeros((rows, cols), dtype=np.uint32); target_map_2 = intensity(myarr, target_map_2)
1 loops, best of 3: 934 ms per loop
In [8]: np.all(target_map_1 == target_map_2)
Out[8]: True
That's almost a 20x speed increase.