Selecting rows from ndarray via bytearray - numpy

I have a bytearray that is pulled from redis.
r.set('a', '')
r.setbit('a', 0, 1)
r.setbit('a', 1, 1)
r.setbit('a', 12, 1)
a_raw = db.get('a')
# b'\xc0\x08'
a_bin = bin(int.from_bytes(a, byteorder="big"))
# 0b1100000000001000
I want to use that bytearray to select rows from an ndarray.
arr = np.arange(12)
arr[a_raw]
# array([0, 1, 12])
Edit Both solutions work, but I found #paul-panzer's to be faster
import timeit
setup = '''import numpy as np; a = b'\\xc0\\x08'; '''
t1 = timeit.timeit('idx = np.unpackbits(np.frombuffer(a, np.uint8)); np.where(idx)',
setup = setup, number=10000)
t2 = timeit.timeit('idx = np.array(list(bin(int.from_bytes(a, byteorder="big"))[2:])) == "1"; np.where(idx)',
setup = setup, number=10000)
print(t1, t2)
#0.019560601096600294 0.054518797900527716
Edit 2 Actually, the from_bytes method doesn't return what I'm looking for:
redis_db.delete('timeit_test')
redis_db.setbit('timeit_test', 12666, 1)
redis_db.setbit('timeit_test', 14379, 1)
by = redis_db.get('timeit_test')
idx = np.unpackbits(np.frombuffer(by, np.uint8))
indices = np.where(idx)
idx = np.array(list(bin(int.from_bytes(by, byteorder="big"))[2:])) == "1"
indices_2 = np.where(idx)
print(indices, indices_2)
#(array([12666, 14379]),) (array([ 1, 1714]),)

Here is a way using unpackbits:
>>> a = b'\xc0\x08'
>>> b = np.arange(32).reshape(16, 2)
>>> c = np.arange(40).reshape(20, 2)
>>>
>>> idx = np.unpackbits(np.frombuffer(a, np.uint8))
>>>
# if the sizes match boolen indexing can be used
>>> b[idx.view(bool)]
array([[ 0, 1],
[ 2, 3],
[24, 25]])
>>>
# non matching sizes can be worked around using where
>>> c[np.where(idx)]
array([[ 0, 1],
[ 2, 3],
[24, 25]])
>>>

Here's one way:
In [57]: b = 0b1100000000001000
In [58]: mask = np.array(list(bin(b)[2:])) == '1'
In [59]: arr = np.arange(13)
In [60]: arr[mask[:len(arr)]]
Out[60]: array([ 0, 1, 12])
Additionally it's a simple check to demonstrate that the __getitem__ implementation for ndarray does not support indexing directly on a bytes object:
In [61]: by = b'\xc0\x08'
In [62]: arr[by]
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-111-6cd68003b176> in <module>()
----> 1 arr[by]
IndexError: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`)
and integer or boolean arrays are valid indices
So unless you subclass ndarray or create an extension module with customized __getitem__ behavior, there is no way to do it directly from the bytes, and you must convert the bytes into a boolean mask based on bitwise conditions.
Here's an example comparing the timing for a few different approaches that work directly from the original bytes object:
In [171]: %timeit np.array(list(bin(int.from_bytes(by, byteorder='big'))[2:])) == '1'
3.51 µs ± 38 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [172]: %timeit np.unpackbits(np.frombuffer(by, np.uint8))
2.05 µs ± 29.59 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [173]: %timeit np.array(list(bin(struct.unpack('>H', by)[0])[2:])) == '1'
2.65 µs ± 6.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

Related

Pandas matching column isin another (list) column (broadcasting `.isin`)

In a workflow matching up a spec against some allowed values, I wish to find which rows (index) are matching a spec.
This is different from Pandas, isin, column of lists, as I an not matching each row against a (static) list.
I can do it with .explode and .groupby or with .apply, but the first seems very complicated and the second has performance issues. There must be a better way, but which? I can't make .isin broadcast, which otherwise would seem like the best solution.
(Example code also at https://colab.research.google.com/drive/1d8v6n99NPBaSufOsaWe3eRRrMgoSG_rr?usp=sharing)
import pandas as pd
import numpy as np
df = pd.DataFrame(data = {
'name': ['a', 'b', 'c'],
'lst': [[0,2,4], [1,2], []],
'spec': [2,4,0]
})
expect = pd.DataFrame(data= {
'name': ['a', 'b', 'c'],
'match_spec': [True, False, False]
})
def check(f):
try:
got = f()
result = (expect['match_spec'] == got)
ok = result.all()
if ok:
print(f'OK {f}')
else:
print(f'FAIL {f}\n{got}')
except Exception as ex:
print(f'ERROR {f}\n{ex}')
def naive_broadcast(): return df.spec in df.lst
check(naive_broadcast)
def result_apply(): return df.apply(lambda x: x.spec in x.lst, axis=1)
check(result_apply)
def naive_isin(): return df.spec.isin(df.lst)
check(naive_isin)
def vectorization(): np.vectorize(df.spec.isin)(df.lst.values)
check(vectorization)
# Another ugly way, exploding and grouping
def explode_groupby():
exp = df.explode('lst')
return (exp.assign(m = (exp['lst'].eq(exp['spec'])))
.groupby('name')
.agg(match_spec=('m', max))
.reset_index()['match_spec'])
check(explode_groupby)
The above code produces:
ERROR <function naive_broadcast at 0x7fe0a4f6c9d0>
unhashable type: 'Series'
OK <function result_apply at 0x7fe0a4f6ca60>
FAIL <function naive_isin at 0x7fe0a4f6c310>
0 False
1 False
2 False
Name: spec, dtype: bool
ERROR <function vectorization at 0x7fe0a4f6c940>
setting an array element with a sequence.
OK <function explode_groupby at 0x7fe0a4f6ce50>
If you are concerned about performance here's something new
pd.DataFrame([*df['lst']]).eq(df['spec'], axis=0).any(axis=1)
Result
0 True
1 False
2 False
dtype: bool
After some experiments, I found a way to do vectorization "right"™ :)
def vectorize_in():
def isin(spec, list):
return spec in list
vec_in = np.vectorize(isin)
return vec_in(df['spec'], df['lst'])
check(vectorize_in)
OK <function vectorize_in at 0x7fe2de337550>
This approach scales very well, both in len(df), max(len(df.lst)) and len(np.unique(np.concatenate(df['lst']))).
As seen by:
import numpy as np
import pandas as pd
rowcount = 10000
df = pd.DataFrame(data = {"spec": np.arange(0,rowcount)})
rand = np.random.default_rng(seed=42)
lst_mean = len(df)/2
lst_ln = 100
def mklist(x):
start = int(np.abs(rand.normal()*lst_mean))
l = int(np.abs(rand.normal()*lst_ln))
return np.arange(start-int(l/2), start+l)
df['lst']=df.apply(mklist, axis=1)
def explode_eq(): pd.DataFrame([*df['lst']]).eq(df['spec'], axis=0).any(axis=1)
%timeit result_apply()
234 ms ± 4.08 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit explode_eq()
1.16 s ± 222 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit vectorize_in()
32.4 ms ± 743 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Vectorized running bin index calculation with Tensorflow or numpy

I have an integer array like this:
in=[1, 2, 6, 1, 3, 2, 1]
I would like to calculate a running index for the equal values in the array. For the matrix above the output would be:
out=[0, 0, 0, 1, 0, 1, 2]
So the naive implementation would be to have a counter for all the values. I would like to have a vectorized solution to run it with tensorflow, perhaps with numpy.
I already thought of creating a 2D tensor of shape=(in.shape[0], tf.max(in), ) and writing 1 to the tensor[i, in[i]] cell, and then call a cumsum column-wise, then writing back row-wise. But my input array is quite big (with several 100k entries) with the maximum value of ~500k, thus this sparse matrix wouldn't even fit into the memory.
Do you have better suggestions? Thank you!
Here's a pandas solution:
s = pd.Series([1, 2, 6, 1, 3, 2, 1])
s.groupby(s).cumcount().values
Output:
array([0, 0, 0, 1, 0, 1, 2], dtype=int64)
Test on similar sized data:
s = pd.Series(np.random.randint(0,500000, 100000))
%timeit -n 100 s.groupby(s).cumcount().values
# 23.9 ms ± 562 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
You can use an actual sparse matrix, i.e. use sparse storage. With that an input like a = np.random.randint(0,5*10**5,10**6) is no problem:
import numpy as np
from scipy import sparse
def running(a):
n,m = a.size,a.max()+1
aux = sparse.csr_matrix((np.ones_like(a),a,np.arange(n+1)),(n,m)).tocsc()
msk = aux.indptr[1:] != aux.indptr[:-1]
indptr = aux.indptr[:-1][msk]
aux.data[0] = 0
aux.data[indptr[1:]] -= np.diff(indptr)
out = np.empty_like(a)
out[aux.indices] = aux.data.cumsum()
return out
# alternative method for validation
def use_argsort(a):
indices = a.argsort(kind="stable")
ao = a[indices]
indptr = np.concatenate([[0],(ao[1:] != ao[:-1]).nonzero()[0]+1])
data = np.ones_like(a)
data[0] = 0
data[indptr[1:]] -= np.diff(indptr)
out = np.empty_like(a)
out[indices] = data.cumsum()
return out
in_ = np.array([1, 2, 6, 1, 3, 2, 1])
print("OP example",in_,"->",running(in_))
print("second opinion","->",use_argsort(in_))
from timeit import timeit
A = np.random.randint(0,500_000,1_000_000)
print("large example (500k labels, 1M entries) takes",
timeit(lambda:running(A),number=10)*100,"ms")
print("using other method takes",
timeit(lambda:use_argsort(A),number=10)*100,"ms")
print("same result:",(use_argsort(A) == running(A)).all())
Sample run:
OP example [1 2 6 1 3 2 1] -> [0 0 0 1 0 1 2]
second opinion -> [0 0 0 1 0 1 2]
large example (500k labels, 1M entries) takes 84.1427305014804 ms
using other method takes 262.38483290653676 ms
same result: True

Efficiently find indexes that would make array equal to a permutation of itself

I'm looking for some function that find the indexes that would make an array equal to a permutation of itself.
Assume that p1 is a 1d Numpy array that contains no duplicates. Assume that p2 is a permutation (a reordering) of p1.
I want a function find_position_in_original such that p2[find_position_in_original(p2, p1)] is identical to p1.
For example:
p1 = np.array(['a', 'e', 'c', 'f'])
p2 = np.array(['e', 'f', 'a', 'c'])
in which find_position_in_permutation(p1, p2) should return:
[2, 0, 1, 3]
because p2[[2, 0, 1, 3]] is identical to p1.
You can do this in a brute-force manner using lists:
def find_position_in_permutation(original, permutation):
original = list(original)
permutation = list(permutation)
return list(map(permutation.index, original))
but I am wondering if there is something more algorithmically efficient. This one appears to be O(N^2).
Benchmarks of current answers:
import numpy as np
from string import ascii_lowercase
n = 100
letters = np.array([*ascii_lowercase])
p1 = np.random.choice(letters, size=n)
p2 = np.random.permutation(p1)
p1l = p1.tolist()
p2l = p2.tolist()
def find_pos_in_perm_1(original, permutation):
""" My original solution """
return list(map(permutation.index, original))
def find_pos_in_perm_2(original, permutation):
""" Eric Postpischil's solution, using a dict as a lookup table """
tbl = {val: ix for ix, val in enumerate(permutation)}
return [tbl[val] for val in original]
def find_pos_in_perm_3(original, permutation):
""" Paul Panzer's solution, using an array as a lookup table """
original_argsort = np.argsort(original)
permutation_argsort = np.argsort(permutation)
tbl = np.empty_like(original_argsort)
tbl[original_argsort] = permutation_argsort
return tbl
%timeit find_pos_in_perm_1(p1l, p2l)
# 40.5 µs ± 1.13 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit find_pos_in_perm_2(p1l, p2l)
# 10 µs ± 171 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit find_pos_in_perm_3(p1, p2)
# 6.38 µs ± 157 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
You can do O(N log N) using argsort:
>>> import numpy as np
>>> from string import ascii_lowercase
>>>
>>> letters = np.array([*ascii_lowercase])
>>> p1, p2 = map(np.random.permutation, 2*(letters,))
>>>
>>> o1, o2 = map(np.argsort, (p1, p2))
>>> o12, o21 = map(np.empty_like, (o1, o2))
>>> o12[o1], o21[o2] = o2, o1
>>>
>>> print(np.all(p1[o21] == p2))
True
>>> print(np.all(p2[o12] == p1))
True
O(N) solution using Python dictionary:
>>> import operator as op
>>>
>>> l1, l2 = map(op.methodcaller('tolist'), (p1, p2))
>>>
>>> s12 = op.itemgetter(*l1)({k: v for v, k in enumerate(l2)})
>>> print(np.all(s12 == o12))
True
Some timings:
26 elements
argsort 0.004 ms
dict 0.003 ms
676 elements
argsort 0.096 ms
dict 0.075 ms
17576 elements
argsort 4.366 ms
dict 2.915 ms
456976 elements
argsort 191.376 ms
dict 230.459 ms
Benchmark code:
import numpy as np
from string import ascii_lowercase
import operator as op
from timeit import timeit
L1 = np.array([*ascii_lowercase], object)
L2 = np.add.outer(L1, L1).ravel()
L3 = np.add.outer(L2, L1).ravel()
L4 = np.add.outer(L2, L2).ravel()
letters = (*map(op.methodcaller('astype', str), (L1, L2, L3, L4)),)
def use_argsort(p1, p2):
o1, o2 = map(np.argsort, (p1, p2))
o12 = np.empty_like(o1)
o12[o1] = o2
return o12
def use_dict(l1, l2):
return op.itemgetter(*l1)({k: v for v, k in enumerate(l2)})
for L, N in zip(letters, (1000, 1000, 200, 4)):
print(f'{len(L)} elements')
p1, p2 = map(np.random.permutation, (L, L))
l1, l2 = map(op.methodcaller('tolist'), (p1, p2))
T = (timeit(lambda: f(i1, i2), number=N)*1000/N for f, i1, i2 in (
(use_argsort, p1, p2), (use_dict, l1, l2)))
for m, t in zip(('argsort', 'dict '), T):
print(m, f'{t:10.3f} ms')

what is the fastest way to get the mode of a numpy array

I have to find the mode of a NumPy array that I read from an hdf5 file. The NumPy array is 1d and contains floating point values.
my_array=f1[ds_name].value
mod_value=scipy.stats.mode(my_array)
My array is 1d and contains around 1M values. It takes about 15 min for my script to return the mode value. Is there any way to make this faster?
Another question is why scipy.stats.median(my_array) does not work while mode works?
AttributeError: module 'scipy.stats' has no attribute 'median'
The implementation of scipy.stats.mode has a Python loop for handling the axis argument with multidimensional arrays. The following simple implementation, for one-dimensional arrays only, is faster:
def mode1(x):
values, counts = np.unique(x, return_counts=True)
m = counts.argmax()
return values[m], counts[m]
Here's an example. First, make an array of integers with length 1000000.
In [40]: x = np.random.randint(0, 1000, size=(2, 1000000)).sum(axis=0)
In [41]: x.shape
Out[41]: (1000000,)
Check that scipy.stats.mode and mode1 give the same result.
In [42]: from scipy.stats import mode
In [43]: mode(x)
Out[43]: ModeResult(mode=array([1009]), count=array([1066]))
In [44]: mode1(x)
Out[44]: (1009, 1066)
Now check the performance.
In [45]: %timeit mode(x)
2.91 s ± 18 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [46]: %timeit mode1(x)
39.6 ms ± 83.8 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
2.91 seconds for mode(x) and only 39.6 milliseconds for mode1(x).
Here's one approach based on sorting -
def mode1d(ar_sorted):
ar_sorted.sort()
idx = np.flatnonzero(ar_sorted[1:] != ar_sorted[:-1])
count = np.empty(idx.size+1,dtype=int)
count[1:-1] = idx[1:] - idx[:-1]
count[0] = idx[0] + 1
count[-1] = ar_sorted.size - idx[-1] - 1
argmax_idx = count.argmax()
if argmax_idx==len(idx):
modeval = ar_sorted[-1]
else:
modeval = ar_sorted[idx[argmax_idx]]
modecount = count[argmax_idx]
return modeval, modecount
Note that this mutates/changes the input array as it sorts it. So, if you want to keep the input array un-mutated or do mind the input array being sorted, pass a copy.
Sample run on 1M elements -
In [65]: x = np.random.randint(0, 1000, size=(1000000)).astype(float)
In [66]: from scipy.stats import mode
In [67]: mode(x)
Out[67]: ModeResult(mode=array([ 295.]), count=array([1098]))
In [68]: mode1d(x)
Out[68]: (295.0, 1098)
Runtime test
In [75]: x = np.random.randint(0, 1000, size=(1000000)).astype(float)
# Scipy's mode
In [76]: %timeit mode(x)
1 loop, best of 3: 1.64 s per loop
# #Warren Weckesser's soln
In [77]: %timeit mode1(x)
10 loops, best of 3: 52.7 ms per loop
# Proposed in this post
In [78]: %timeit mode1d(x)
100 loops, best of 3: 12.8 ms per loop
With a copy, the timings for mode1d would be comparable to mode1.
I added the two functions mode1 and mode1d from replies above to my script and tried to compare with the scipy.stats.mode.
dir_name="C:/Users/test_mode"
file_name="myfile2.h5"
ds_name="myds"
f_in=os.path.join(dir_name,file_name)
def mode1(x):
values, counts = np.unique(x, return_counts=True)
m = counts.argmax()
return values[m], counts[m]
def mode1d(ar_sorted):
ar_sorted.sort()
idx = np.flatnonzero(ar_sorted[1:] != ar_sorted[:-1])
count = np.empty(idx.size+1,dtype=int)
count[1:-1] = idx[1:] - idx[:-1]
count[0] = idx[0] + 1
count[-1] = ar_sorted.size - idx[-1] - 1
argmax_idx = count.argmax()
if argmax_idx==len(idx):
modeval = ar_sorted[-1]
else:
modeval = ar_sorted[idx[argmax_idx]]
modecount = count[argmax_idx]
return modeval, modecount
startTime=time.time()
with h5py.File(f_in, "a") as f1:
myds=f1[ds_name].value
time1=time.time()
file_read_time=time1-startTime
print(str(file_read_time)+"\t"+"s"+"\t"+str((file_read_time)/60)+"\t"+"min")
print("mode_scipy=")
mode_scipy=scipy.stats.mode(myds)
print(mode_scipy)
time2=time.time()
mode_scipy_time=time2-time1
print(str(mode_scipy_time)+"\t"+"s"+"\t"+str((mode_scipy_time)/60)+"\t"+"min")
print("mode1=")
mode1=mode1(myds)
print(mode1)
time3=time.time()
mode1_time=time3-time2
print(str(mode1_time)+"\t"+"s"+"\t"+str((mode1_time)/60)+"\t"+"min")
print("mode1d=")
mode1d=mode1d(myds)
print(mode1d)
time4=time.time()
mode1d_time=time4-time3
print(str(mode1d_time)+"\t"+"s"+"\t"+str((mode1d_time)/60)+"\t"+"min")
The result from running the script for a numpy array of around 1M is :
mode_scipy=
ModeResult(mode=array([ 1.11903353e-06], dtype=float32), count=array([304909]))
938.8368742465973 s
15.647281237443288 min
mode1=(1.1190335e-06, 304909)
0.06500649452209473 s
0.0010834415753682455 min
mode1d=(1.1190335e-06, 304909)
0.06200599670410156 s
0.0010334332784016928 min

Conditional nd argmin: How can I find the coordinates of the min of a subset of a multidimensional array?

I know I can use argmin and unravel_index to find the index of the smallest value in an ndarray, but what if I want to find the smallest nonzero element, or the smallest element which is not NaN?
Here's an approach using flattened indices -
def flatnonzero_based(a,condition): # condition = a!= or ~np.isnan(a)
idx = np.flatnonzero(condition)
return np.unravel_index(idx[np.take(a, idx).argmin()], a.shape)
Benchmarking
Approaches -
def flatnonzero_based(a,condition): # Proposed soln
idx = np.flatnonzero(condition)
return np.unravel_index(idx[np.take(a, idx).argmin()], a.shape)
def where_based(a, condition): # #Paul Panzer's soln
nz = np.where(condition)
return np.array(nz)[:, np.argmin(a[nz])]
Timings and verification -
In [233]: a = np.random.rand(40,50,30)
In [234]: nan_idx = np.random.choice(range(a.size), size = a.size//100, replace=0)
In [235]: a.ravel()[nan_idx] = np.nan
In [236]: condition = ~np.isnan(a)
In [237]: where_based(a, condition)
Out[237]: array([16, 10, 8])
In [238]: flatnonzero_based(a, condition)
Out[238]: (16, 10, 8)
In [239]: %timeit where_based(a, condition)
1000 loops, best of 3: 877 µs per loop
In [240]: %timeit flatnonzero_based(a, condition)
10000 loops, best of 3: 143 µs per loop
With 4D data -
In [255]: a = np.random.rand(40,50,30,30)
In [256]: nan_idx = np.random.choice(range(a.size), size = a.size//100, replace=0)
In [257]: a.ravel()[nan_idx] = np.nan
In [258]: condition = ~np.isnan(a)
In [259]: where_based(a, condition)
Out[259]: array([34, 14, 5, 10])
In [260]: flatnonzero_based(a, condition)
Out[260]: (34, 14, 5, 10)
In [261]: %timeit where_based(a, condition)
10 loops, best of 3: 64.9 ms per loop
In [262]: %timeit flatnonzero_based(a, condition)
100 loops, best of 3: 5.32 ms per loop
Incorporating #user7138814's suggestion -
In [267]: np.unravel_index(np.nanargmin(a), a.shape)
Out[267]: (34, 14, 5, 10)
In [268]: %timeit np.unravel_index(np.nanargmin(a), a.shape)
100 loops, best of 3: 4.54 ms per loop
This should work (condition is data != 0 or ~np.isnan(data))
nz = np.where(condition)
cond_arg_min = np.array(nz)[:, np.argmin(data[nz])]