some background:
val (name, age) = person
This syntax is called a destructuring declaration. It creates multiple variables (correction, creates multiple values) at at the same time.
Destructuring declarations also work in for-loops: when you say:
for ((a, b) in collection) { ... }
Lets take a look at a list item i have:
#Parcelize
data class MyModel(
var name: String = "",
var is_locked: Boolean = true,
var is_one_size: Boolean = false,
) : Parcelable
and now i have obtained a list of "MyModel" classes and i am trying to loop over them like this:
private fun initMyModelList(model: MutableList<MyModel>) {
//i want to access is_locked from here with destruction but i cant ? IDE telling me the type is an int but its clearly defined as a Boolean
for((is_locked) in model){
//what i want to do in here is access the is_locked var of the model list and change all of them in a loop. im trying to use Destructuring in loop as a conveience. why is it not working ?
//how can i make the call signature look like this--- > is_locked = true instad of model.is_locked =true
}
}
all i want to do is be able to call is_locked = true instead of model.is_locked = true within the loop. how can this be done ?
This syntax is called a destructuring declaration. It creates multiple variables at at the same time.
It doesn't create multiple variables, it captures multiple values. You're working with values, not references, as your source tells further:
A destructuring declaration is compiled down to the following code:
val name = person.component1()
val age = person.component2()
Closest to what you want would be this custom extension function:
inline fun <E> Iterable<E>.withEach(block: E.() -> Unit) {
forEach {
it.block()
}
}
Use like so:
model.withEach {
is_locked = true
}
Before you ask the obligatory question "why isn't this included in stdlib?" consider that functional style programming typically is about transforming immutable types. Basically, what I did here was encourage a bad habit.
Basically, it isn't possible, cause your code is compiled to something like:
for (m in models) {
val is_locked = m.component1()
...
}
Which means that you create a local property which cannot be reassigned. But you can do something like this:
for (m in model) {
with(m) {
is_locked = true
}
}
Yep, it isn't perfect, but it can be improved with extension methods:
fun <T> List<T>.forEachApply(block: T.() -> Unit) {
forEach(block)
}
private fun initMyModelList(model: MutableList<MyModel>) {
model.forEachApply {
is_locked = true
}
}
You can use destructuring in a loop just fine as read-only values.
data class Stuff(val name: String, val other: String)
fun doStuff() {
val stuff = Stuff("happy", "day")
val stuffs = listOf(stuff)
for ((name) in stuffs) {
println(name)
}
}
Running that method prints "happy" to the console. Baeldung shows an example of using it here.
It's best practice for data classes to be immutable, so I would try to rewrite your data class to be immutable. The .copy function will let you copy your data class but with new, different values.
Related
Trying to call lambda provided by MyClass constructor using Kotlin Reflection.
data class MyClass(
var magic:Int=2,
var lambdaValue: ()->String = { //trying to call this lambda from reflection
"Working"
},
)
fun main(args: Array<String>) {
val clazz=MyClass::class
val obj=clazz.createInstance()
val kProperty=clazz.memberProperties
clazz.constructors.forEach{cons-> // for each construtor
cons.parameters.forEach{ parameter-> // looping through constructor parameters
val property=kProperty.find { it.name==parameter.name } // finding the exact property
print(parameter.name+" : ")
if(parameter.type.arguments.isEmpty()) // if empty Int,Float
{
println(property?.get(obj))
}else{
println(property?.call(obj)) // unable to call lambda
}
}
}
}
property.call(obj) returns Any which is not invokable. Any solution?
Expected:
magic : 2
lambdaValue : Working
Frankly speaking, I'm not sure what was your idea behind parameter.type.arguments.isEmpty(). It seems unrelated to what you try to do.
If we have a value of the property already, we can simply check its type and if its is a function then invoke it:
val value = kProperty.find { it.name==parameter.name }!!.get(obj)
print(parameter.name+" : ")
when (value) {
is Function0<*> -> println(value())
else -> println(value)
}
I think usefulness of such a code in generic case isn't very high. This code doesn't know what is the function and if it is going to return a value or perform some action, etc. Maybe in your specific case it is more useful.
Using Kotlin type-safe builders one might end up writing this code
code {
dict["a"] = "foo"; // dict is a Map hidden inside that can associate some name to some value
println(dict["a"]); // usage of this value
}
This code is ok, but there is a problem: "a" is just a string. I want it to be like a user-defined variable - an identifier that is recognized by the compiler, auto-complete enabled.
Is there a way to turn it into something like this?
code {
a = "foo"; // now 'a' is not a Map key, but an identifier recognized by Kotlin as a variable name
println(a);
}
I can do this if I make code's lambda an extension function over some object with a field a defined inside. This is not what I want. I want to be able to use other variables (with unknown names) as well.
A possible workaround could be
code {
var a = v("a", "foo");
println(a);
}
Where v is a method of the extension's object, that stores value "foo" inside "dict" and also returns a handle to this value.
This case is almost perfect, but can it be clearer/better somehow?
You can use property delegation:
class Code {
private val dict = mutableMapOf<String, String>()
operator fun String.provideDelegate(
thisRef: Any?,
prop: KProperty<*>
): MutableMap<String, String> {
dict[prop.name] = this
return dict
}
}
Use case:
code {
var a by "foo" // dict = {a=foo}
println(a) // foo
a = "bar" // dict = {a=bar}
println(a) // bar
}
Suppose I have two methods:
private fun method1(a: A): A {
return a.copy(v1 = null)
}
private fun method2(a: A): A {
return a.copy(v2 = null)
}
Can I write something like:
private fun commonMethod(a: A, variableToChange: String): A {
return a.copy($variableToChange = null)
}
Another words, can I use a variable to refer to a named argument?
If I understand correctly what you are trying to archive I would recommend to pass a setter to the method e.g.
fun <A> changer (a: A, setter: (a: A) -> Unit ) {
// do stuff
setter(a)
}
Is this what you are looking for?
A possible solution for this problem (with usage of reflection) is:
inline fun <reified T : Any> copyValues(a: T, values: Map<String, Any?>): T {
val function = a::class.functions.first { it.name == "copy" }
val parameters = function.parameters
return function.callBy(
values.map { (parameterName, value) ->
parameters.first { it.name == parameterName } to value
}.toMap() + (parameters.first() to a)
) as T
}
This works with all data classes and all classes that have a custom copy function with the same semantics (as long as the parameter names are not erased while compiling). In the first step the function reference of the copy method is searched (KFunction<*>). This object has two importent properties. The parameters property and the callBy function.
With the callBy function you can execute all function references with a map for the parameters. This map must contain a reference to the receiver object.
The parameters propery contains a collection of KProperty. They are needed as keys for the callBy map. The name can be used to find the right KProperty. If a function as a parameter that is not given in the map it uses the default value if available or throws an exception.
Be aware that this solution requires the full reflection library and therefore only works with Kotlin-JVM. It also ignores typechecking for the parameters and can easily lead to runtime exceptions.
You can use it like:
data class Person (
val name: String,
val age: Int,
val foo: Boolean
)
fun main() {
var p = Person("Bob", 18, false)
println(p)
p = copyValues(p, mapOf(
"name" to "Max",
"age" to 35,
"foo" to true
))
println(p)
}
// Person(name=Name, age=15, foo=false)
// Person(name=Max, age=35, foo=true)
I've seen lots of tutorials but still didn't get exactly how it works. I understood the main idea: a function holding functions with data, but looking official documentation I couldn't realize how and where the data is stored and who calls the function responsible for its storaging. Other tutorials seems to show just a snippet of code, which didn't help me much. Can you give me a full and simple example with a trivial class, like a person, please?
I was interested in some details, too. Here's what I wrote:
data class Person(
var name: String? = null,
var age: Int? = null,
val children: MutableList<Person> = ArrayList()
) {
fun child(init: Person.() -> Unit) = Person().also {
it.init()
children.add(it)
}
}
fun person(init: Person.() -> Unit) = Person().apply { init() }
fun main(args: Array<String>) {
val p = person {
name = "Mommy"
age = 33
child {
name = "Gugu"
age = 2
}
child {
name = "Gaga"
age = 3
}
}
println(p)
}
It prints out (with a little formatting added):
Person(name=Mommy, age=33, children=[
Person(name=Gugu, age=2, children=[]),
Person(name=Gaga, age=3, children=[])
])
Kotlin DSLs
Kotlin is great for writing your own Domain Specific Languages, also called type-safe builders. Anko is one of the examples using such DSLs. The most important language feature you need to understand here is called "Function Literals with Receiver", which you made use of already: Test.() -> Unit
Function Literals with Receiver - Basics
Kotlin supports the concept of “function literals with receivers”. This enables us to call methods on the receiver of the function literal in its body without any specific qualifiers. This is very similar to extension functionsin which it’s also possible to access members of the receiver object inside the extension.
A simple example, also one of the greatest functions in the Kotlin standard library, isapply
public inline fun <T> T.apply(block: T.() -> Unit): T { block(); return this }
As you can see, such a function literal with receiver is taken as the argument block here. This block is simply executed and the receiver (which is an instance of T) is returned. In action this looks as follows:
val foo: Bar = Bar().apply {
color = RED
text = "Foo"
}
We instantiate an object of Bar and call apply on it. The instance of Bar becomes the “receiver”. The block, passed as an argument in {}(lambda expression) does not need to use additional qualifiers to access and modify the shown visible properties color and text.
Function Literals with Receiver - in DSL
If you look at this example, taken from the documentation, you see this in action:
class HTML {
fun body() { ... }
}
fun html(init: HTML.() -> Unit): HTML {
val html = HTML() // create the receiver object
html.init() // pass the receiver object to the lambda
return html
}
html { // lambda with receiver begins here
body() // calling a method on the receiver object
}
The html() function expects such a function literal with receiver with HTML as the receiver. In the function body you can see how it is used: an instance of HTML is created and the init is called on it.
Benefit
The caller of such an higher-order function expecting a function literal with receiver (like html()) you can use any visible HTML function and property without additional qualifiers (like this e.g.), as you can see in the call:
html { // lambda with receiver begins here
body() // calling a method on the receiver object
}
Example
I've written a sample DSL and described it in a blog post. Maybe that's also helpful.
Just to add other syntaxe
data class QCMBean(var qcmId : Int=-1, var question : String = "", var answers : ArrayList<AnswerBean> = ArrayList()) {
companion object {
fun qcm(init:QCMBean.()->Unit) = QCMBean().apply {
init()
}
}
fun answer(answer:String = "") = AnswerBean(answer).apply {
answers.add(this)
}
}
data class AnswerBean(var answer:String = "")
qcm {
qcmId = 1
question = "How many cat ?"
answer("1")
answer("2")
}
I played about with Kotlin's unsupported JavaScript backend in 1.0.x and am now trying to migrate my toy project to 1.1.x. It's the barest bones of a single-page web app interfacing with PouchDB. To add data to PouchDB you need JavaScript objects with specific properties _id and _rev. They also need to not have any other properties beginning with _ because they're reserved by PouchDB.
Now, if I create a class like this, I can send instances to PouchDB.
class PouchDoc(
var _id: String
) {
var _rev: String? = null
}
However, if I do anything to make the properties virtual -- have them override an interface, or make the class open and create a subclass which overrides them -- the _id field name becomes mangled to something like _id_mmz446$_0 and so PouchDB rejects the object. If I apply #JsName("_id") to the property, that only affects the generated getter and setter -- it still leaves the backing field with a mangled name.
Also, for any virtual properties whose names don't begin with _, PouchDB will accept the object but it only stores the backing fields with their mangled names, not the nicely-named properties.
For now I can work around things by making them not virtual, I think. But I was thinking of sharing interfaces between PouchDoc and non-PouchDoc classes in Kotlin, and it seems I can't do that.
Any idea how I could make this work, or does it need a Kotlin language change?
I think your problem should be covered by https://youtrack.jetbrains.com/issue/KT-8127
Also, I've created some other related issues:
https://youtrack.jetbrains.com/issue/KT-17682
https://youtrack.jetbrains.com/issue/KT-17683
And right now You can use one of next solutions, IMO third is most lightweight.
interface PouchDoc1 {
var id: String
var _id: String
get() = id
set(v) { id = v}
var rev: String?
var _rev: String?
get() = rev
set(v) { rev = v}
}
class Impl1 : PouchDoc1 {
override var id = "id0"
override var rev: String? = "rev0"
}
interface PouchDoc2 {
var id: String
get() = this.asDynamic()["_id"]
set(v) { this.asDynamic()["_id"] = v}
var rev: String?
get() = this.asDynamic()["_rev"]
set(v) { this.asDynamic()["_rev"] = v}
}
class Impl2 : PouchDoc2 {
init {
id = "id1"
rev = "rev1"
}
}
external interface PouchDoc3 { // marker interface
}
var PouchDoc3.id: String
get() = this.asDynamic()["_id"]
set(v) { this.asDynamic()["_id"] = v}
var PouchDoc3.rev: String?
get() = this.asDynamic()["_rev"]
set(v) { this.asDynamic()["_rev"] = v}
class Impl3 : PouchDoc3 {
init {
id = "id1"
rev = "rev1"
}
}
fun keys(a: Any) = js("Object").getOwnPropertyNames(a)
fun printKeys(a: Any) {
println(a::class.simpleName)
println(" instance keys: " + keys(a).toString())
println("__proto__ keys: " + keys(a.asDynamic().__proto__).toString())
println()
}
fun main(args: Array<String>) {
printKeys(Impl1())
printKeys(Impl2())
printKeys(Impl3())
}
I got a good answer from one of the JetBrains guys, Alexey Andreev, over on the JetBrains forum at https://discuss.kotlinlang.org/t/controlling-the-jsname-of-fields-for-pouchdb-interop/2531/. Before I describe that, I'll mention a further failed attempt at refining #bashor's answer.
Property delegates
I thought that #bashor's answer was crying out to use property delegates but I couldn't get that to work without infinite recursion.
class JSMapDelegate<T>(
val jsobject: dynamic
) {
operator fun getValue(thisRef: Any?, property: KProperty<*>): T {
return jsobject[property.name]
}
operator fun setValue(thisRef: Any?, property: KProperty<*>, value: T) {
jsobject[property.name] = value
}
}
external interface PouchDoc4 {
var _id: String
var _rev: String
}
class Impl4() : PouchDoc4 {
override var _id: String by JSMapDelegate<String>(this)
override var _rev: String by JSMapDelegate<String>(this)
constructor(_id: String) : this() {
this._id = _id
}
}
The call within the delegate to jsobject[property.name] = value calls the set function for the property, which calls the delegate again ...
(Also, it turns out you can't put a delegate on a property in an interface, even though you can define a getter/setter pair which work just like a delegate, as #bashor's PouchDoc2 example shows.)
Using an external class
Alexey's answer on the Kotlin forums basically says, "You're mixing the business (with behaviour) and persistence (data only) layers: the right answer would be to explicitly serialise to/from JS but we don't provide that yet; as a workaround, use an external class." The point, I think, is that external classes don't turn into JavaScript which defines property getters/setters, because Kotlin doesn't let you define behaviour for external classes. Given that steer, I got the following to work, which does what I want.
external interface PouchDoc5 {
var _id: String
var _rev: String
}
external class Impl5 : PouchDoc5 {
override var _id: String
override var _rev: String
}
fun <T> create(): T = js("{ return {}; }")
fun Impl5(_id: String): Impl5 {
return create<Impl5>().apply {
this._id = _id
}
}
The output of keys for this is
null
instance keys: _id
__proto__ keys: toSource,toString,toLocaleString,valueOf,watch,unwatch,hasOwnProperty,isPrototypeOf,propertyIsEnumerable,__defineGetter__,__defineSetter__,__lookupGetter__,__lookupSetter__,__proto__,constructor
Creating external classes
Three notes about creating instances of external classes. First, Alexey said to write
fun <T> create(): T = js("{}")
but for me (with Kotlin 1.1) that turns into
function jsobject() {
}
whose return value is undefined. I think this might be a bug, because the official doc recommends the shorter form, too.
Second, you can't do this
fun Impl5(_id: String): Impl5 {
return (js("{}") as Impl5).apply {
this._id = _id
}
}
because that explicitly inserts a type-check for Impl5, which throws ReferenceError: Impl5 is not defined (in Firefox, at least). The generic function approach skips the type-check. I'm guessing that's not a bug, since Alexey recommended it, but it seems odd, so I'll ask him.
Lastly, you can mark create as inline, though you'll need to suppress a warning :-)