Stratified Kfold - pandas

If I am correct Stratified kfold is used so that the dependent variable ratio in the splits is similar to the original data.
What I want to understand is why is it necessary or important to retain that ratio.
Is it necessary for fraud detection problems where data is highly imbalanced.
If yes, why?

Taken from https://stats.stackexchange.com/questions/49540/understanding-stratified-cross-validation
Cross-validation article in Encyclopedia of Database Systems says:
Stratification is the process of rearranging the data as to ensure each fold is a
good representative of the whole. For example in a binary classification problem
where each class comprises 50% of the data, it is best to arrange the data such
that in every fold, each class comprises around half the instances.
About the importance of the stratification, Kohavi (A study of cross-validation
and bootstrap for accuracy estimation and model selection) concludes that:
stratification is generally a better scheme, both in terms of bias and variance,
when compared to regular cross-validation.
All metrics calculate against the true labels. If there is a bias in the system, say it predicts more of one label, a fold with more of said label would give artificially large results.
a methodology to take care of that is to ensure the true labels distribution is very similar for each fold. Then the aggregation of results would be more indicative of system performance.

Related

Why machine learning algorithms focus on speed and not accuracy?

I study ML and I see that most of the time the focus of the algorithms is run time and not accuracy. Reducing features, taking sample from the data set, using approximation and so on.
Im not sure why its the focus since once I trained my model I dont need to train it anymore if my accuracy is high enough and for that if it will take me 1 hours or 10 days to train my model it does not really matter because I do it only 1 time and my goal is to predict as better as I can my outcomes (minimum loss).
If I train a model to differ between cats and dogs I want it to be the most accurate it can be and not the fasted since once I trained this model I dont need to train any more models.
I can understand why models that depends on fasting changing data need this focus of speed but for general training models I dont understand why the focus is on speed.
Speed is relative term. Accuracy is also relative depending on the difficulty of the task. Currently the goal is to achieve human-like performance for application at reasonable costs because this will replace human labor and cut costs.
From what I have seen in reading papers, people usually focus on accuracy first to produce something that works. Then do ablation studies - studies where pieces of the models are removed or modified - to achieve the same performance in less time or memory requirements.
The field is very experimentally validated. There really isn't much of a theory that states why CNN work so well other than that it can model any function given non-linear activations functions. (https://en.wikipedia.org/wiki/Universal_approximation_theorem) There have been some recent efforts to explain why it works well. One I recall is MobileNetV2: Inverted Residuals and Linear Bottlenecks. The explaination of embedding data into a low dimensional space without losing information might be worth reading.

Can predictions be trusted if learning curve shows validation error lower than training error?

I'm working with neural networks (NN) as a part of my thesis in geophysics, and is using TensorFlow with Keras for training my network.
My current task is to use a NN to approximate a thermodynamical model i.e a nonlinear regression problem. It takes 13 input parameters and outputs a velocity profile (velocity vs. depth) of 450 parameters. My data consists of 100,000 synthetic examples (i.e. no noise is present), split in training (80k), validation (10k) and testing (10k).
I've tested my network for a number of different architectures: wider (5-800 neurons) and deeper (up to 10 layers), different learning rates and batch sizes, and even for many epochs (5000). Basically all the standard tricks of the trade...
But, I am puzzled by the fact that the learning curve shows validation error lower than training error (for all my tests), and I've never been able to overfit to the training data. See figure below:
The error on the test set is correspondingly low, thus the network seems to be able to make decent predictions. It seems like a single hidden layer of 50 neurons is sufficient. However, I'm not sure if I can trust these results due to the behavior of the learning curve. I've considered that this might be due to the validation set consisting of examples that are "easy" to predict, but I cannot see how I should change this. A bigger validation set perhaps?
To wrap it up: Is is necessarily a bad sign if the validation error is lower than or very close to the training error? What if the predictions made with said network are decent?
Is it possible that overfitting is simply not possible for my problem and data?
In addition to trying a higher k fold and the additional testing holdout sample,perhaps mix it up when sampling from the original data set: Select a stratified sample when partitioning out the training and validation/test sets. Then partition the validation and test set without stratifying the sampling.
My opinion is that if you introduce more variation in your modeling methodology (without breaking any "statistical rules"), you can be more confident in the model that you have created.
You can achieve more trustworthy results by repeating your experiments on different data. Use cross validation with high fold (like k=10) to get better confidence of your solution performance. Usually neural networks easily overfit, if your solution has similar results on validation and test set its a good sign.
It is not that easy to tell when not knowing the exact way you have setup the experiment:
what cross-validation method did you use?
how did you split the data?
etc
As you mentioned, the fact that you observe validation error lower than training can be a result of the fact that either the training dataset contains many "hard" cases to learn or the validation set contains many "easy" cases to predict.
However, since generally speaking training loss is expected to underestimate the validation, to me the specific model appear to have unpredictable/unknown fit (perform better in predicting the unknown that the known feels indeed weird).
In order to overcome this, I would start experimenting by reconsidering the data splitting strategy, adding more data if possible, or even change your performance metric.

How to make a model of 10000 Unique items using tensorflow? Will it scale?

I have a use case where I have around 100 images each of 10000 unique items. I have 10 items with me which are all from the 10000 set and I know which 10 items too but only at the time of testing on live data. I have to now match the 10 items with their names. What would be an efficient way to recognise these items? I have full control of training environment background and the testing environment background. If I make one model of all 10000 items, will it scale? Or should I make 10000 different models and run the 10 items on the 10 models I have pretrained.
Your question is regarding something called "one-vs-all classification" you can do a google search for that, the first hit is a video lecture by Andrew Ng that's almost certainly worth watching.
The question has been long studied and in a plethora of contexts. The answer to your question does very much depend on what model you use. But I'll assume that, if you're doing image classification, you are using convolutional neural networks, because, after all, they're state of the art for most such image classification tasks.
In the context of convolutional networks, there is something called "Multi task learning" that you should read up on. Boiled down to a single sentence, the concept is that the more you ask the network to learn the better it is at the individual tasks. So, in this case, you're almost certain to perform better training 1 model on 10,000 classes than 10,000 classes each performing a one-vs-all classification scheme.
Take for example the 1,000 class Imagenet dataset, and CIFAR-10's 10 class dataset. It has been demonstrated in numerous papers that first training against Imagenet's 1,000 class dataset, and then simply replacing the last layer with a 10 class output and re-training on CIFAR-10's dataset will produce a better result than just training on CIFAR-10's dataset alone. There are admittedly multiple reasons for this result, Imagenet is a larger dataset. But the richness of class labels, multi-task learning, in the Imagenet dataset is certainly among the reasons for this result.
So that was a long winded way of saying, use one model with 10,000 classes.
An aside:
If you want to get really, really interesting, and jump into the realm of research level thinking, you might consider a 1-hot vector of 10,000 classes rather sparse and start thinking about whether you could reduce the dimensionality of your output layer using an embedding. An embedding would be a dense vector, let's say size 100 as a good starting point. Now class labels turn into clusters of points in your 100 dimensional space. I bet your network will perform even better under these conditions.
If this little aside didn't make sense, it's completely safe to ignore it, your 10,000 class output is fine. But if it did peek your interest look up information on Word2Vec, and read this really nice post on how face recognition is achieved using embeddings: https://medium.com/#ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78. You might also consider using an Auto Encoder to generate an embedding for the images (though I favor triplet embeddings as typically used in face recognition myself).

Must each tensorflow batch contain a uniform distribution of the inputs for all expected classifications?

This is probably a newbie question but I'm trying to get my head around how training on small batches works.
Scenario -
For the mnist classification problem, let's say that we have a model with appropriate hyerparameters that allow training on 0-9 digits. If we feed it with a small batches of uniform distribution of inputs (that have more or less same numbers of all digits in each batch), it'll learn to classify as expected.
Now, imagine that instead of a uniform distribution, we trained the model on images containing only 1s so that the weights are adjusted until it works perfectly for 1s. And then we start training on images that contain only 2s. Note that only the inputs have changed, the model and everything else has stayed the same.
Question -
What does the training exclusively on 2s after the model was already trained exclusively on 1s do? Will it keep adjusting the weights till it has forgotten (so to say) all about 1s and is now classifying on 2s? Or will it still adjust the weights in a way that it remembers both 1s and 2s?
In other words, must each batch contain a uniform distribution of different classifications? Does retraining a trained model in Tensorflow overwrite previous trainings? If yes, if it is not possible to create small (< 256) batches that are sufficiently uniform, does it make sense to train on very large (>= 500-2000) batch sizes?
That is a good question without a clear answer. In general, the order and selection of training samples has a large impact on the performance of the trained net, in particular in respect to the generalization properties it shows.
The impact is so strong, actually, that selecting specific examples, and ordering them in a particular way to maximize performance of the net even constitutes a genuine research area called `curriculum learning'. See this research paper.
So back to your specific question: You should try different possibilities and evaluate each of them (which might actually be an interesting learning exercise anyways). I would expect uniformly distributed samples to generalize well over different categories; samples drawn from the original distribution to achieve the highest overall score (since, if you have 90% samples from one category A, getting 70% over all categories will perform worse than having 99% from category A and 0% everywhere else, in terms of total accuracy); other sample selection mechanisms will show different behavior.
An interesting reading about such questions is Bengio's 2012 paper Practical Recommendations for Gradient-Based Training of Deep
Architectures
There is a section about online learning where the distribution of training data is unknown. I quote from the original paper
It
means that online learners, when given a stream of
non-repetitive training data, really optimize (maybe
not in the optimal way, i.e., using a first-order gradient
technique) what we really care about: generalization
error.
The best practice though to figure out how your dataset behaves under different testing scenarios would be to try them both and get experimental results of how the distribution of the training data affects your generalization error.

One class classification - interpreting the models accuracy

I am using LIBSVM for classification of data. I am mainly doing One Class Classification.
My training sets consists of data of only one class & my testing data consists of data of two classes (one which belong to target class & the other which doesn't belong to the target class).
After applying svmtrain and svmpredict on both training and testing datasets the accuracy which is coming for training sets is 48% and for testing sets it is 34.72%.
Is it good? How can I know whether LIBSVM is classifying the datasets correctly?
To say if it is good or not depends entirely on the data you are trying to classify. You should search what is the state of the art accuracy for SVM model for your kind of classification and then you will be able to know if your model is good or not.
What I can say from your results is that the testing accuracy is worse than the training accuracy, which is normal as a classifier usually perform better with data it has already seen before.
What you can try now is to play with the regularization parameter (C if you are using a linear kernel) and see if the performance improves on the testing set.
You can also trace learning curves to see if your classifier overfit or not, which will help you choose if you need to increase or decrease the regularization.
For you case, you might want to apply weighting on the classes as the data is often sparse in favor of negative example.
To know whether Libsvm is classifying the dataset correctly you can look at which examples it predicted correctly and which ones it predicted incorrectly. Then you can try to change your features to improve its results.
If you are worried about your code being correct, you can try to code a toy example and play with it or use an example of someone on the web and replicate their results.