Using COPY to import a .json file into a PostgreSQL table - sql
I want to import some weather data (temperature, wind speed, ...) that is all formatted in a JSON file into a PostgreSQL 11 table so I can then make queries on that data.
I've been able to manually insert some data into a table but that's only OK because it's a small amount of data and I'm planning on using a LOT more data afterwards. Here is what I've found using the INSERT function: https://datavirtuality.com/blog-json-in-postgresql/.
That's why I've been trying to use the COPY function but no luck so far, even after having read a lot of stuff on different sources on the Internet ...
The JSON file is downloadable there : https://queueresults.meteoblue.com/F2637B90-45BB-4E7A-B47C-C34CD56674B3 (let me know if the file doesn't exist anymore).
I've been able to import the JSON file as text into a table with:
create table temp_json (values text);
copy temp_json from '/home/cae/test.json';
But I don't think that's the best approach to be able to make efficient queries later on ...
I usually run into the following error during my tests:
ERROR: invalid input syntax for type json
DETAIL: The input string ended unexpectedly.
CONTEXT: JSON data, line 1: [
as if I'm not able to parse the JSON file and the array properly within PostgreSQL ...
Thanks for your help !
Edit: Here is the content of the JSON file:
[
{
"geometry": {
"type": "MultiPoint",
"locationNames": [
"59.4°N/24.7°E31.7m",
"59.4°N/24.8°E36.4m"
],
"coordinates": [
[
24.7,
59.4,
31.73
],
[
24.8,
59.4,
36.445
]
]
},
"domain": "NEMS12",
"codes": [
{
"unit": "°C",
"dataPerTimeInterval": [
{
"data": [
[
-0.395,
-0.195,
-0.099999994,
-0.030000001,
-0.060000002,
-0.099999994,
-0.099999994,
0.005,
-0.055,
0.19,
0.48,
0.725,
1.88,
1.88,
1.855,
1.935,
2.1950002,
2.595,
3.3049998,
4.115,
3.37,
2.97,
3.32,
3.5149999,
3.56,
3.44,
3.355,
3.3600001,
3.32,
3.32,
3.4250002,
3.42,
3.3899999,
3.445,
3.3200002,
3.0549998,
4.58,
4.01,
3.02,
2.79,
2.75,
2.76,
2.855,
2.99,
2.96,
2.775,
2.595,
2.4250002
],
[
-0.49,
-0.26,
-0.16,
-0.09,
-0.1,
-0.13,
-0.12,
0.01,
-0.07,
0.17,
0.44,
0.66,
1.84,
1.85,
1.83,
1.9,
2.15,
2.55,
3.27,
4.11,
3.46,
2.96,
3.31,
3.5,
3.55,
3.42,
3.33,
3.34,
3.29,
3.29,
3.43,
3.44,
3.42,
3.52,
3.41,
3.11,
4.53,
4,
3.01,
2.79,
2.76,
2.77,
2.87,
3,
2.93,
2.71,
2.53,
2.38
]
],
"gapFillRatio": 0
}
],
"level": "2 m above gnd",
"aggregation": "none",
"code": 11,
"variable": "Temperature"
}
],
"timeIntervals": [
[
"20180101T0000",
"20180101T0100",
"20180101T0200",
"20180101T0300",
"20180101T0400",
"20180101T0500",
"20180101T0600",
"20180101T0700",
"20180101T0800",
"20180101T0900",
"20180101T1000",
"20180101T1100",
"20180101T1200",
"20180101T1300",
"20180101T1400",
"20180101T1500",
"20180101T1600",
"20180101T1700",
"20180101T1800",
"20180101T1900",
"20180101T2000",
"20180101T2100",
"20180101T2200",
"20180101T2300",
"20180102T0000",
"20180102T0100",
"20180102T0200",
"20180102T0300",
"20180102T0400",
"20180102T0500",
"20180102T0600",
"20180102T0700",
"20180102T0800",
"20180102T0900",
"20180102T1000",
"20180102T1100",
"20180102T1200",
"20180102T1300",
"20180102T1400",
"20180102T1500",
"20180102T1600",
"20180102T1700",
"20180102T1800",
"20180102T1900",
"20180102T2000",
"20180102T2100",
"20180102T2200",
"20180102T2300"
]
],
"timeResolution": "hourly"
},
{
"geometry": {
"coordinates": [
[
24.7,
59.4,
31.73
],
[
24.8,
59.4,
36.445
]
],
"locationNames": [
"59.4°N/24.7°E31.7m",
"59.4°N/24.8°E36.4m"
],
"type": "MultiPoint"
},
"domain": "NEMS12",
"codes": [
{
"unit": "°C",
"aggregation": "none",
"code": 11,
"level": "1000 mb",
"dataPerTimeInterval": [
{
"data": [
[
-0.585,
-0.265,
-0.055,
0.04,
0.044999998,
0.08,
0.11,
0.205,
0.13499999,
0.43,
0.84000003,
1.2,
2.1,
2.33,
2.5,
2.72,
3.1750002,
3.775,
4.915,
5.37,
4.16,
3.795,
4.1949997,
4.41,
4.415,
4.275,
4.1800003,
4.16,
4.0950003,
4.08,
4.185,
4.1,
3.98,
3.575,
3.22,
2.92,
4.395,
3.7649999,
2.895,
2.66,
2.6550002,
2.72,
2.845,
2.955,
2.89,
2.685,
2.54,
2.355
],
[
-0.64,
-0.29,
-0.08,
0.01,
0.03,
0.08,
0.12,
0.24,
0.14,
0.4,
0.8,
1.13,
2.11,
2.34,
2.52,
2.74,
3.19,
3.82,
4.91,
5.45,
4.29,
3.81,
4.19,
4.42,
4.43,
4.28,
4.17,
4.15,
4.08,
4.06,
4.18,
4.12,
4.01,
3.66,
3.31,
2.97,
4.38,
3.79,
2.9,
2.68,
2.68,
2.75,
2.89,
2.99,
2.88,
2.64,
2.43,
2.27
]
],
"gapFillRatio": 0
}
],
"variable": "Temperature"
}
],
"timeIntervals": [
[
"20180101T0000",
"20180101T0100",
"20180101T0200",
"20180101T0300",
"20180101T0400",
"20180101T0500",
"20180101T0600",
"20180101T0700",
"20180101T0800",
"20180101T0900",
"20180101T1000",
"20180101T1100",
"20180101T1200",
"20180101T1300",
"20180101T1400",
"20180101T1500",
"20180101T1600",
"20180101T1700",
"20180101T1800",
"20180101T1900",
"20180101T2000",
"20180101T2100",
"20180101T2200",
"20180101T2300",
"20180102T0000",
"20180102T0100",
"20180102T0200",
"20180102T0300",
"20180102T0400",
"20180102T0500",
"20180102T0600",
"20180102T0700",
"20180102T0800",
"20180102T0900",
"20180102T1000",
"20180102T1100",
"20180102T1200",
"20180102T1300",
"20180102T1400",
"20180102T1500",
"20180102T1600",
"20180102T1700",
"20180102T1800",
"20180102T1900",
"20180102T2000",
"20180102T2100",
"20180102T2200",
"20180102T2300"
]
],
"timeResolution": "hourly"
},
{
"geometry": {
"type": "MultiPoint",
"locationNames": [
"59.4°N/24.7°E31.7m",
"59.4°N/24.8°E36.4m"
],
"coordinates": [
[
24.7,
59.4,
31.73
],
[
24.8,
59.4,
36.445
]
]
},
"domain": "NEMS12",
"codes": [
{
"unit": "°C",
"dataPerTimeInterval": [
{
"data": [
[
-7.0950003,
-6.615,
-4.815,
-3.55,
-2.6750002,
-2.1950002,
-2.695,
-2.87,
-2.1399999,
-0.995,
0.1,
1,
0.335,
0.38,
-0.030000001,
-0.8,
-0.18,
0.575,
1.11,
-0.32999998,
-1.03,
-2.31,
-3.09,
-3.7350001,
-3.93,
-3.905,
-3.92,
-3.71,
-3.625,
-3.195,
-3.7,
-3.32,
-3.72,
-3.915,
-3.93,
-3.605,
-4.315,
-3.8899999,
-3.815,
-3.38,
-3.2150002,
-3.27,
-3.435,
-3.47,
-3.43,
-3.37,
-3.44,
-3.51
],
[
-7.11,
-6.73,
-4.94,
-3.57,
-2.7,
-2.15,
-2.62,
-2.91,
-2.22,
-1.1,
0.03,
0.9,
0.36,
0.37,
0.11,
-0.74,
-0.13,
0.59,
1.19,
-0.19,
-0.95,
-2.18,
-3.08,
-3.68,
-3.97,
-3.94,
-3.93,
-3.69,
-3.63,
-3.27,
-3.7,
-3.32,
-3.68,
-3.9,
-3.97,
-3.6,
-4.29,
-3.92,
-3.8,
-3.37,
-3.24,
-3.28,
-3.42,
-3.44,
-3.39,
-3.35,
-3.37,
-3.44
]
],
"gapFillRatio": 0
}
],
"level": "850 mb",
"code": 11,
"aggregation": "none",
"variable": "Temperature"
}
],
"timeResolution": "hourly",
"timeIntervals": [
[
"20180101T0000",
"20180101T0100",
"20180101T0200",
"20180101T0300",
"20180101T0400",
"20180101T0500",
"20180101T0600",
"20180101T0700",
"20180101T0800",
"20180101T0900",
"20180101T1000",
"20180101T1100",
"20180101T1200",
"20180101T1300",
"20180101T1400",
"20180101T1500",
"20180101T1600",
"20180101T1700",
"20180101T1800",
"20180101T1900",
"20180101T2000",
"20180101T2100",
"20180101T2200",
"20180101T2300",
"20180102T0000",
"20180102T0100",
"20180102T0200",
"20180102T0300",
"20180102T0400",
"20180102T0500",
"20180102T0600",
"20180102T0700",
"20180102T0800",
"20180102T0900",
"20180102T1000",
"20180102T1100",
"20180102T1200",
"20180102T1300",
"20180102T1400",
"20180102T1500",
"20180102T1600",
"20180102T1700",
"20180102T1800",
"20180102T1900",
"20180102T2000",
"20180102T2100",
"20180102T2200",
"20180102T2300"
]
]
},
{
"geometry": {
"type": "MultiPoint",
"locationNames": [
"59.4°N/24.7°E31.7m",
"59.4°N/24.8°E36.4m"
],
"coordinates": [
[
24.7,
59.4,
31.73
],
[
24.8,
59.4,
36.445
]
]
},
"domain": "NEMS12",
"codes": [
{
"unit": "°C",
"dataPerTimeInterval": [
{
"data": [
[
-10.84,
-12,
-10.280001,
-8.865,
-8.5,
-7.7,
-7.5699997,
-7.655,
-8.434999,
-8.844999,
-8.700001,
-7.1549997,
-9.555,
-10.004999,
-7.885,
-8.32,
-8.370001,
-8.915,
-9.53,
-10.225,
-10.934999,
-11.12,
-11.434999,
-11.575,
-11.965,
-11.64,
-12.12,
-12.345,
-12.34,
-12.48,
-12.844999,
-13.174999,
-13.18,
-13.219999,
-13.434999,
-13.305,
-12.775,
-12.745,
-12.79,
-12.75,
-12.690001,
-12.77,
-12.77,
-12.76,
-12.67,
-12.605,
-12.635,
-12.695
],
[
-10.74,
-11.94,
-10.54,
-8.77,
-8.56,
-7.75,
-7.52,
-7.53,
-8.24,
-8.95,
-8.77,
-7.15,
-9.48,
-10.03,
-7.88,
-8.24,
-8.35,
-8.82,
-9.4,
-10.08,
-10.84,
-11.04,
-11.3,
-11.5,
-11.9,
-11.6,
-12.09,
-12.31,
-12.39,
-12.48,
-12.83,
-13.16,
-13.2,
-13.19,
-13.4,
-13.3,
-12.77,
-12.7,
-12.78,
-12.71,
-12.66,
-12.73,
-12.73,
-12.72,
-12.62,
-12.57,
-12.6,
-12.67
]
],
"gapFillRatio": 0
}
],
"code": 11,
"level": "700 mb",
"aggregation": "none",
"variable": "Temperature"
}
],
"timeResolution": "hourly",
"timeIntervals": [
[
"20180101T0000",
"20180101T0100",
"20180101T0200",
"20180101T0300",
"20180101T0400",
"20180101T0500",
"20180101T0600",
"20180101T0700",
"20180101T0800",
"20180101T0900",
"20180101T1000",
"20180101T1100",
"20180101T1200",
"20180101T1300",
"20180101T1400",
"20180101T1500",
"20180101T1600",
"20180101T1700",
"20180101T1800",
"20180101T1900",
"20180101T2000",
"20180101T2100",
"20180101T2200",
"20180101T2300",
"20180102T0000",
"20180102T0100",
"20180102T0200",
"20180102T0300",
"20180102T0400",
"20180102T0500",
"20180102T0600",
"20180102T0700",
"20180102T0800",
"20180102T0900",
"20180102T1000",
"20180102T1100",
"20180102T1200",
"20180102T1300",
"20180102T1400",
"20180102T1500",
"20180102T1600",
"20180102T1700",
"20180102T1800",
"20180102T1900",
"20180102T2000",
"20180102T2100",
"20180102T2200",
"20180102T2300"
]
]
},
{
"geometry": {
"type": "MultiPoint",
"locationNames": [
"59.4°N/24.7°E",
"59.4°N/24.8°E"
],
"coordinates": [
[
24.7,
59.4,
"NaN"
],
[
24.8,
59.4,
"NaN"
]
]
},
"domain": "CAMSGLOBAL",
"codes": [
{
"unit": "",
"dataPerTimeInterval": [
{
"data": [
[
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN"
],
[
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN",
"NaN"
]
],
"gapFillRatio": 0
}
],
"code": 706,
"level": "sfc",
"aggregation": "none",
"variable": "Air Quality Index"
}
],
"timeResolution": "hourly",
"timeIntervals": [
[
"20180101T0000",
"20180101T0100",
"20180101T0200",
"20180101T0300",
"20180101T0400",
"20180101T0500",
"20180101T0600",
"20180101T0700",
"20180101T0800",
"20180101T0900",
"20180101T1000",
"20180101T1100",
"20180101T1200",
"20180101T1300",
"20180101T1400",
"20180101T1500",
"20180101T1600",
"20180101T1700",
"20180101T1800",
"20180101T1900",
"20180101T2000",
"20180101T2100",
"20180101T2200",
"20180101T2300",
"20180102T0000",
"20180102T0100",
"20180102T0200",
"20180102T0300",
"20180102T0400",
"20180102T0500",
"20180102T0600",
"20180102T0700",
"20180102T0800",
"20180102T0900",
"20180102T1000",
"20180102T1100",
"20180102T1200",
"20180102T1300",
"20180102T1400",
"20180102T1500",
"20180102T1600",
"20180102T1700",
"20180102T1800",
"20180102T1900",
"20180102T2000",
"20180102T2100",
"20180102T2200",
"20180102T2300"
]
]
}
]
Given your first example, you could then process it like this to separate the json array into individual objects and stuff them into a table as separate rows:
create table real_json as select value::jsonb from temp_json join lateral json_array_elements(values::json) on true;
However, this depends on the large single json object always being small enough to fit comfortably into an amount of memory you are willing to use, which seems like a dubious proposition. You need a library which does incremental or streaming parsing on the JSON object, returning one 2nd level object at a time and then clearing it from memory one returned. I don't think that PostgreSQL provides such a facility. If you let us know what your favorite programming language is, perhaps someone can propose a specific library.
Alternatively, you could whip up a quick and dirty script that divides the JSON into lines for separate records based on the assumption that the indenting of the "pretty" file is always correct, and so using "^ [{}]" as markers, and then strips out the newlines to reverse the "pretty" formatting so that each record is a single line. If you had such a script, you could then do:
\copy real_json FROM PROGRAM 'unnest_top_array_and_depretty /home/cae/test_without_new_lines.json';
Same code of #jjanes with a real, working command line tool.
\copy json_table FROM PROGRAM 'jq --stream -nc -f myfile.json';
Removing the ''pretty format'' from the file helped in using the COPY function but it puts the whole content of the file in one row, making it impossible to run a simple SELECT query on an existing column ...
Here is what I used :
CREATE TEMP TABLE target(data jsonb);
copy target from '/home/cae/test_without_new_lines.json';
Related
Plotly Animation with slider
I want to add two moving points represent the location of two trains according to the day. My day data is as shown in pic starting from 0 to 7. However, in the resulting animation, the slider does not slide into the integer day. It jumped from 1.75 to 2.25 or 2.75 to 3.25 automatically. Can anyone help me to solve that? trainpath info import plotly.graph_objects as go import pandas as pd dataset = pd.read_csv('trainpath.csv') days = [] for k in range(len(dataset['day'])): if dataset['day'][k] not in days: days.append(dataset['day'][k]) t1 = [-1, 0, 1, 1, 1, 0, -1, -1, -1] k1 = [-20, -20, -20, 0, 20, 20, 20, 0, -20] # make list of trains trains = [] for train in dataset["train"]: if train not in trains: trains.append(train) # make figure fig_dict = { "data": [go.Scatter(x=t1, y=k1, mode="lines", line=dict(width=2, color="blue")), go.Scatter(x=t1, y=k1, mode="lines", line=dict(width=2, color="blue"))], "layout": {}, "frames": [] } # fill in most of layout fig_dict['layout']['title'] = {'text':'Train Animation'} fig_dict["layout"]["xaxis"] = {"range": [-10, 10], "title": "xlocation", 'autorange':False, 'zeroline':False} fig_dict["layout"]["yaxis"] = {"range": [-22, 22], "title": "ylocation", 'autorange':False, 'zeroline':False} fig_dict["layout"]["hovermode"] = "closest" fig_dict["layout"]["updatemenus"] = [ { "buttons": [ { "args": [None, {"frame": {"duration": 500, "redraw": False}, "fromcurrent": True, "transition": {"duration": 300, "easing": "quadratic-in-out"}}], "label": "Play", "method": "animate" }, { "args": [[None], {"frame": {"duration": 0, "redraw": False}, "mode": "immediate", "transition": {"duration": 0}}], "label": "Pause", "method": "animate" } ], "direction": "left", "pad": {"r": 10, "t": 87}, "showactive": False, "type": "buttons", "x": 0.1, "xanchor": "right", "y": 0, "yanchor": "top" } ] sliders_dict = { "active": 0, "yanchor": "top", "xanchor": "left", "currentvalue": { "font": {"size": 20}, "prefix": "Day:", "visible": True, "xanchor": "right" }, "transition": {"duration": 300, "easing": "cubic-in-out"}, "pad": {"b": 10, "t": 50}, "len": 0.9, "x": 0.1, "y": 0, "steps": [] } # make data day = 0 for train in trains: dataset_by_date = dataset[dataset['day']==day] dataset_by_date_and_train = dataset_by_date[dataset_by_date['train']==train] data_dict = { 'x': list(dataset_by_date_and_train['x']), 'y': list(dataset_by_date_and_train['y']), 'mode': 'markers', 'text': train, 'marker': { 'sizemode': 'area', 'sizeref': 20, 'size': 20, # 'size': list(dataset_by_date_and_train['quantity']) # this section can be used to increase or decrease the marker size to reflect the material quantity }, 'name': train } fig_dict['data'].append(data_dict) # make frames for day in days: frame={'data': [go.Scatter(x=t1, y=k1, mode="lines", line=dict(width=2, color="blue")), go.Scatter(x=t1, y=k1, mode="lines", line=dict(width=2, color="blue"))], 'name':str(day)} for train in trains: dataset_by_date = dataset[dataset['day'] == day] dataset_by_date_and_train = dataset_by_date[dataset_by_date['train'] == train] data_dict = { 'x': list(dataset_by_date_and_train['x']), 'y': list(dataset_by_date_and_train['y']), 'mode': 'markers', 'text': train, 'marker': { 'sizemode': 'area', 'sizeref': 20, 'size': 20, # 'size': list(dataset_by_date_and_train['quantity']) # this section can be used to increase or decrease the marker size to reflect the material quantity }, 'name': train } frame['data'].append(data_dict) fig_dict['frames'].append(frame) slider_step = {'args': [ [day], {'frame': {'duration':300, 'redraw':False}, 'mode': 'immediate', 'transition': {'duration':3000}} ], 'label': day, 'method': 'animate'} sliders_dict["steps"].append(slider_step) if day == 7: print('H') fig_dict["layout"]["sliders"] = [sliders_dict] fig = go.Figure(fig_dict) fig.show()
prevent text from overlapping data points and other text
I'm trying to find an intelligent solution to how text / annotations are placed into a matplotlib plt so they don't over lap with the data point being annotated. Code snip below. Apologies for long dict at the top. So far I've found adjustText which looks very promising, but I can't seem to get it working in this instance. The code below uses adjust_text(), but at the moment all text is being placed together in one part of the ax and I don't understand why. If you run without adjust_text() it places text roughly where it should be, but text is overlapping the data point in places, which I want to avoid. Grateful for any help. fig, ax = plt.subplots(figsize=(10, 8)) dl_data = { "Center": { "axis": (0, 0), "tp": (0, 0), "r": 21.37311395187889, "colour": "#ffffff", "text": "Center", "fill": "solid", "ec": "#808080", "alignment": ("center", "center"), }, "First": { "r": 6.758772077825972, "wlc": 45.681000000000004, "text": "First", "colour": "#FFFFFF", "fill": "dashed", "ec": "#808080", "alignment": ("center", "center"), "axis": (-68.82111180215705, -1.2642233142341064e-14), "tp": (-68.82111180215705, -1.2642233142341064e-14), }, "Second": { "r": 18.979199140111263, "wlc": 360.21000000000004, "text": "Second", "colour": "#FFFFFF", "fill": "dashed", "ec": "#808080", "alignment": ("center", "center"), "axis": (-34.41055590107855, 59.600831137357034), "tp": (-34.41055590107855, 59.600831137357034), }, "P1": { "r": 4.779173568725037, "wlc": 2.6, "colour": "#92a700", "text": "P1, £3", "fill": "solid", "ec": "#92a700", "axis": (-80.83697480558055, -1.4849511367261418e-14), "alignment": ("right", "top"), "tp": (-87.6161483743056, -1.6094825349031936e-14), }, "P2": { "r": 4.779173568725037, "wlc": 0, "colour": "#ffba00", "text": "P2 has a long\nName, £0\n\n", "fill": "solid", "ec": "#ffba00", "axis": (-13.031791598544089, 30.17548646933409), "alignment": ("left", "top"), "tp": (-9.047093352116576, 24.691019844418072), }, "P3": { "r": 4.779173568725037, "wlc": 0.21, "colour": "#92a700", "text": "P3 has a very,\nlong long long,\nname, £0 \n", "fill": "solid", "ec": "#92a700", "axis": (-55.78932020361301, 30.175486469334082), "alignment": ("right", "top"), "tp": (-59.77401845004052, 24.691019844418065), }, "P4": { "r": 15.811388300841896, "wlc": 250, "colour": "#e77200", "text": "P4 also\nhas a longish\nname, £250\n", "fill": "solid", "ec": "#e77200", "axis": (-34.41055590107855, 95.97255740839438), "alignment": ("center", "center"), "tp": (-34.41055590107855, 113.78394570923628), }, "P5": { "r": 4.779173568725037, "wlc": 6.6, "colour": "#92a700", "text": "P5 is medium,\n£7\n\n", "fill": "solid", "ec": "#92a700", "axis": (-69.00212318005225, 70.8403126698613), "alignment": ("right", "top"), "tp": (-75.44950037768407, 72.9351925104148), }, "P6": { "r": 10.16857905510893, "wlc": 103.4, "colour": "#92a700", "text": "P6 is a very long name\nlike P4 is also,\n£100\n", "fill": "solid", "ec": "#92a700", "axis": (0.181011377895139, 70.8403126698613), "alignment": ("left", "top"), "tp": (11.754017782309209, 74.600610395285), }, } ts = [] x_list = [] y_list = [] for c in dl_data.keys(): circle = plt.Circle( dl_data[c]["axis"], # x, y position radius=dl_data[c]["r"], fc=dl_data[c]["colour"], # face colour ec=dl_data[c]["ec"], # edge colour zorder=2, ) ax.add_patch(circle) x = dl_data[c]["axis"][0] y = dl_data[c]["axis"][1] text = dl_data[c]["text"] if c in ["Center", "First", "Second"]: pass else: ts.append(ax.text(x, y, dl_data[c]["text"])) x_list.append(x) y_list.append(y) adjust_text( ts, x=x_list, y=y_list, force_points=0.1, arrowprops=dict(arrowstyle="->", color="red"), ) plt.axis("scaled") plt.axis("off") plt.show()
There are two issues: adjust_text must called after all drawing is completed, i.e. plt.axis("scaled") must come before adjust_text, see docs: Call adjust_text the very last, after all plotting (especially anything that can change the axes limits) has been done. You must pass your circles as additional objects to be avoided: add_objects=objects ts = [] x_list = [] y_list = [] objects = [] for c in dl_data.keys(): circle = plt.Circle( dl_data[c]["axis"], # x, y position radius=dl_data[c]["r"], fc=dl_data[c]["colour"], # face colour ec=dl_data[c]["ec"], # edge colour zorder=2, ) objects.append(circle) ax.add_patch(circle) x = dl_data[c]["axis"][0] y = dl_data[c]["axis"][1] text = dl_data[c]["text"] if c in ["Center", "First", "Second"]: pass else: ts.append(ax.text(x, y, dl_data[c]["text"].strip())) x_list.append(x) y_list.append(y) plt.axis("scaled") plt.axis("off") adjust_text( ts, add_objects=objects, arrowprops=dict(arrowstyle="->", color="red"), ) I couldn't manage to move the P6 text away from the green and orange circles, though.
tf.dataSync() does not return tensor from BlazeFaceModel in a readable form
I am using BlazeFaceModel to detect faces before sending the faces to another model using Tensorflow.js When I am using a custom model and trying to get the tensor output I used the code below and it worked at returning the tensors. const returnTensors = true; const faces = await blazeModel.estimateFaces(tensor, returnTensors); if (faces !== null) { // Download the tensors to view the shape const face = faces.dataSync(); face.forEach((pred, i) => { console.log(`x: ${i}, pred: ${pred}`); }); } But it throws the following error when applying on the tensor output from BlazeFaceModel: faces.dataSync is not a function. (In 'faces.dataSync()', 'faces.dataSync' is undefined) Output from console.log(faces) Array [ Object { "bottomRight": Tensor { "dataId": Object {}, "dtype": "float32", "id": 60793, "isDisposedInternal": false, "kept": false, "rankType": "1", "scopeId": 116528, "shape": Array [ 2, ], "size": 2, "strides": Array [], }, "landmarks": Tensor { "dataId": Object {}, "dtype": "float32", "id": 60795, "isDisposedInternal": false, "kept": false, "rankType": "2", "scopeId": 116532, "shape": Array [ 6, 2, ], "size": 12, "strides": Array [ 2, ], }, "probability": Tensor { "dataId": Object {}, "dtype": "float32", "id": 60785, "isDisposedInternal": false, "kept": false, "rankType": "1", "scopeId": 116495, "shape": Array [ 1, ], "size": 1, "strides": Array [], }, "topLeft": Tensor { "dataId": Object {}, "dtype": "float32", "id": 60792, "isDisposedInternal": false, "kept": false, "rankType": "1", "scopeId": 116526, "shape": Array [ 2, ], "size": 2, "strides": Array [], }, }, ]
faces is not a tensor. It is an array of json with key values where the values are tensor. If you would like to get all the tensors at once in an array, Object.values(faces[0]) can be used tensors = Object.values(faces[0]) // array of tensor tensors.map(t => t.dataSync()) // download the value of the tensor to a js array // alternatively they can all be converted to a big tensor before using only once dataSync()
CouchDB Response Time Statistic is not being measured
I have a CouchDB instance running on a Windows Server. When I run the command: curl http://HOSTNAME:5984/_node/_local/_stats/couchdb/request_time I receive the following response: { "value": { "min": 0.0, "max": 0.0, "arithmetic_mean": 0.0, "geometric_mean": 0.0, "harmon ic_mean": 0.0, "median": 0.0, "variance": 0.0, "standard_deviation": 0.0, "skewness": 0.0, "kurtosis": 0.0, "percentile": [ [ 50, 0.0 ], [ 75, 0.0 ], [ 90, 0.0 ], [ 95, 0.0 ], [ 99, 0.0 ], [ 999, 0.0 ] ], "histogram": [ [ 0, 0 ] ], "n": 0 }, "type": "histogram", "desc": "length of a request inside CouchDB without MochiWeb" } I have a few databases on this server and have made roughly 50,000 HTTP requests. Why are all values for the response time metric equal to zero? How can I activate this metric?
Error using tensorflow create_coco_tf_record script: "TypeError: string indices must be integers"
I want to use the create_coco_tf_record-script provided by tensorflow, to convert the following simple label definition in coco json format to TFRecord: "info": { "year": 2018, "version": null, "description": "TransferLearningTest", "contributor": "ralph#r4robotics.com.au", "url": "labelbox.io", "date_created": "2018-03-25T08:30:27.427851+00:00" }, "images": [{ "id": "cjf6gxqjw2fho01619gre5j0y", "width": 615, "height": 409, "file_name": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles1.jpg?alt=media&token=b381c976-da30-49d7-8e95-eb4ae8588354", "license": null, "flickr_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles1.jpg?alt=media&token=b381c976-da30-49d7-8e95-eb4ae8588354", "coco_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles1.jpg?alt=media&token=b381c976-da30-49d7-8e95-eb4ae8588354", "date_captured": null }, { "id": "cjf6gyhtl55sv01385xtqjrqi", "width": 259, "height": 194, "file_name": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles2.jpg?alt=media&token=9b274e2e-c541-4e80-8f3d-b198f3ba9b4d", "license": null, "flickr_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles2.jpg?alt=media&token=9b274e2e-c541-4e80-8f3d-b198f3ba9b4d", "coco_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles2.jpg?alt=media&token=9b274e2e-c541-4e80-8f3d-b198f3ba9b4d", "date_captured": null }, { "id": "cjf6gzj9v2g1h0161bwh18chv", "width": 277, "height": 182, "file_name": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles3.jpg?alt=media&token=3cfc13ca-432d-4501-b574-00d3874a4682", "license": null, "flickr_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles3.jpg?alt=media&token=3cfc13ca-432d-4501-b574-00d3874a4682", "coco_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles3.jpg?alt=media&token=3cfc13ca-432d-4501-b574-00d3874a4682", "date_captured": null }, { "id": "cjf6h0p9n55wz0178pg79lc3c", "width": 301, "height": 167, "file_name": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles4.jpg?alt=media&token=d2660bc4-d576-45f0-8de6-557270fc683d", "license": null, "flickr_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles4.jpg?alt=media&token=d2660bc4-d576-45f0-8de6-557270fc683d", "coco_url": "https://firebasestorage.googleapis.com/v0/b/labelbox-193903.appspot.com/o/cjf6gtsr950sr0125idy65yiy%2Ff245e964-d756-4c01-98de-b6e5a9070588%2Fbottles4.jpg?alt=media&token=d2660bc4-d576-45f0-8de6-557270fc683d", "date_captured": null }], "annotations": [{ "id": 1, "image_id": "cjf6gxqjw2fho01619gre5j0y", "category_id": 1, "segmentation": [ [118.39765618513167, 313.457848898712, 179.7169976455091, 299.1734470204843, 294.6908226914901, 310.3222212573321, 337.1962867729657, 334.7101881586143, 366.4623832276035, 338.89097185223864, 372.03689297966736, 385.5765403887654, 332.31863061175864, 389.75732408238974, 282.84505592143563, 406.48051201843583, 215.9512047089942, 408.5708772844735, 192.2596180064203, 390.4541125044023, 151.8445552101198, 403.6933051688366, 105.1582353958287, 376.51813141795526, 118.39765618513167, 313.457848898712] ], "area": 22106.876283900496, "bbox": [105.1582353958287, 0.42912271552648545, 266.8786575838387, 109.39743026398922], "iscrowd": 0 }, { "id": 2, "image_id": "cjf6gxqjw2fho01619gre5j0y", "category_id": 1, "segmentation": [ [160.20631983821562, 142.04523900617488, 195.04687288245222, 131.24488556110788, 308.62704390918475, 134.03209241070698, 356.01021731433246, 152.1488571907783, 381.7922053020817, 150.75522718520426, 384.57951334057844, 186.64038911511503, 349.7389071338769, 187.68559832890833, 317.6856089656722, 202.3183678373679, 159.50946624735892, 195.3503772941444, 160.20631983821562, 142.04523900617488] ], "area": 13123.705213053147, "bbox": [159.50946624735892, 206.6816321626321, 225.07004709321953, 71.07348227626002], "iscrowd": 0 }, { "id": 3, "image_id": "cjf6gyhtl55sv01385xtqjrqi", "category_id": 1, "segmentation": [ [80.06035395893144, 68.18619344603749, 119.11342792196902, 74.69491256085784, 131.84812313721997, 72.14801308536389, 177.97602777539703, 78.09078572494903, 187.59778022105084, 91.67421361042045, 203.1624077063576, 93.37213939731716, 201.18146375358646, 112.04938782407424, 184.76784795099502, 111.200414135477, 169.20322046568833, 122.51994816851872, 128.16920254987957, 117.42614921753086, 114.86852951688535, 114.03029764373744, 93.07803808305403, 114.31328167650393, 70.43857992260781, 103.2767316762287, 80.06035395893144, 68.18619344603749] ], "area": 4995.907009222967, "bbox": [70.43857992260781, 71.48005183148128, 132.7238277837498, 54.33375472248123], "iscrowd": 0 }, { "id": 4, "image_id": "cjf6gzj9v2g1h0161bwh18chv", "category_id": 1, "segmentation": [ [173.46162883883662, 160.28013107383993, 255.65715601241382, 148.2998138472238, 266.2728180897869, 177.11325728633884, 184.68389092165103, 182.8759506021435, 159.20627416758742, 180.1462513325615, 154.35340470313542, 170.74397441725296, 175.28142885516084, 167.7109803710303, 173.46162883883662, 160.28013107383993] ], "area": 2509.1082874191734, "bbox": [154.35340470313542, -0.8759506021434983, 111.91941338665146, 34.576136754919716], "iscrowd": 0 }, { "id": 5, "image_id": "cjf6gzj9v2g1h0161bwh18chv", "category_id": 1, "segmentation": [ [37.58112185203197, 87.03332022958155, 45.16373762158412, 93.40262623857566, 94.90570169790779, 106.44448675338808, 106.73458692647054, 87.03332022958155, 46.680260775494574, 73.08155224493905, 40.31086815713212, 74.901344044691, 33.63817553604898, 74.901344044691, 27.875382923127926, 80.9673321371363, 37.58112185203197, 87.03332022958155] ], "area": 1386.09176276128, "bbox": [27.875382923127926, 75.55551324661192, 78.85920400334261, 33.36293450844903], "iscrowd": 0 }, { "id": 6, "image_id": "cjf6gzj9v2g1h0161bwh18chv", "category_id": 1, "segmentation": [ [200.7590456092244, 136.92608617388885, 181.95412147624396, 120.09295996138994, 234.4258318576678, 85.2135284298296, 255.05055600697247, 103.71478748380605, 200.7590456092244, 136.92608617388885] ], "area": 1614.301579806095, "bbox": [181.95412147624396, 45.073913826111145, 73.09643453072852, 51.71255774405926], "iscrowd": 0 }, { "id": 7, "image_id": "cjf6h0p9n55wz0178pg79lc3c", "category_id": 1, "segmentation": [ [17.847508506087518, 28.63952607163654, 66.60858665657888, 24.08859036914734, 77.98617155836023, 14.986669362689923, 145.27644948557162, 14.49906202292621, 147.5519565454611, 51.881911126804255, 75.0605019090974, 56.10780833710362, 64.0079859014193, 47.98110201017366, 24.3489855928197, 53.34473314609532, 17.847508506087518, 28.63952607163654] ], "area": 4189.730491764894, "bbox": [17.847508506087518, 110.89219166289638, 129.7044480393736, 41.60874631417741], "iscrowd": 0 }, { "id": 8, "image_id": "cjf6h0p9n55wz0178pg79lc3c", "category_id": 1, "segmentation": [ [223.94433711573117, 23.27591973645434, 257.10186033759857, 27.82685543894354, 261.32783036444124, 48.306165303102944, 179.73427308501883, 104.86804629868364, 145.27644948557162, 113.3198159185429, 128.37261898053467, 122.42173692500033, 111.46876367433086, 108.76885541531423, 131.29826382863067, 96.09118858515549, 137.14960312715638, 77.56230808005091, 223.94433711573117, 23.27591973645434] ], "area": 6031.236484118768, "bbox": [111.46876367433086, 44.57826307499967, 149.85906669011038, 99.14581718854599], "iscrowd": 0 }, { "id": 9, "image_id": "cjf6h0p9n55wz0178pg79lc3c", "category_id": 1, "segmentation": [ [26.299423758605975, 125.34733136210352, 40.60267830965016, 111.53193060632253, 117.97024076106304, 72.6862842838929, 133.57379568968702, 80.81299061082292, 132.59856420621048, 93.16559414805232, 111.46876367433086, 115.2702204768582, 64.33305479552251, 138.67514957886033, 46.128923912905776, 139.65033945764822, 23.37375410934314, 148.75226046410563, 8.095292875989244, 141.11316147693933, 26.299423758605975, 125.34733136210352] ], "area": 3857.6591542480846, "bbox": [8.095292875989244, 18.24773953589436, 125.47850281369777, 76.06597618021274], "iscrowd": 0 }], "licenses": [], "categories": [{ "supercategory": "Bottle", "id": 1, "name": "Bottle" }] } But when I run the script using with open('coco_labels.json') as json_data: label_info = json.load(json_data) IMAGE_FOLDER = "coco_images" with tf.python_io.TFRecordWriter("training.record") as writer: for i,image in enumerate(label_info["images"]): img_data = requests.get(image["file_name"]).content image_name = "image"+str(i)+".jpg" image_path = os.path.join(IMAGE_FOLDER,image_name) with open(image_path, 'wb') as handler: handler.write(img_data) image["file_name"] = image_name tf_example = create_coco_tf_record.create_tf_example(image, label_info["annotations"][i], IMAGE_FOLDER, label_info["categories"] ) writer.write(tf_example.SerializeToString()) I get the error (image, annotations_list, image_dir, category_index, include_masks) 124 num_annotations_skipped = 0 125 for object_annotations in annotations_list: --> 126 (x, y, width, height) = tuple(object_annotations['bbox']) 127 if width <= 0 or height <= 0: 128 num_annotations_skipped += 1 TypeError: string indices must be integers What could be the problem?
Each image is supposed to receive a list of annotations, and you are providing a single one. Making it a single element list should solve your error. Ideally, make each item of images in your json be a list itself. As a quick fix, embrace label_info["annotations"][i] in brackets: [label_info["annotations"][i]]