How can I weight inputs for Keras model on tensorflow? - tensorflow

I want to predict a time series value (regression task). But I need to tell the machine that recent observations in a batch relate stronger to the label than older ones.
In other words - I want to weight input values. How can this be done?

You can use autocorrelation of Y with itself using a time lag, like:
time_lag=4
x_train=dataframe[0:-timelag]
y_train=dataframe[time_lag:]
from pandas.plotting import autocorrelation_plot
autocorrelation_plot(dataframe)
You will notice autocorrelation will decrease its value with more distant values.
However, a proper neural network will learn that without being explicitly programmed, given that correlation with close values will naturally be bigger, and so the weights, in absolute values.

Related

What’s the advantage of using LSTM for time series predict as opposed to Regression?

In neural networks, in general, which model should yield a better and accurate output between both for time series?
As you rightly mentioned, We can use linear regression with time series data as long as:
The inclusion of lagged terms as regressors does not create a collinearity problem.
Both the regressors and the explained variable are stationary.
Your errors are not correlated with each other.
The other linear regression assumptions apply.
No autocorrelation is the single most important assumption in linear regression. If autocorrelation is present the consequences are the following:
Bias: Your “best fit line” will likely be way off because it will be pulled away from the “true line” by the effect of the lagged errors.
Inconsistency: Given the above, your sample estimators are unlikely to converge to the population parameters.
Inefficiency: While it is theoretically possible, your residuals are unlikely to be homoskedastic if they are autocorrelated. Thus, your confidence intervals and your hypothesis tests will be unreliable.
While, The Long Short Term Memory neural network is a type of a Recurrent Neural Network (RNN). RNNs use previous time events to inform the later ones. For example, to classify what kind of event is happening in a movie, the model needs to use information about previous events. RNNs work well if the problem requires only recent information to perform the present task. If the problem requires long term dependencies, RNN would struggle to model it. The LSTM was designed to learn long term dependencies. It remembers the information for long periods.
To focus on the 1st sequence. The model takes the feature of the time bar at index 0 and it tries to predict the target of the time bar at index 1. Then it takes the feature of the time bar at index 1 and it tries to predict the target of the time bar at index 2, etc. The feature of 2nd sequence is shifted by 1 time bar from the feature of 1st sequence, the feature of 3rd sequence is shifted by 1 time bar from 2nd sequence, etc. With this procedure, we get many shorter sequences that are shifted by a single time bar.

Isn't it dangerous to apply Min Max Scaling to the test set?

Here's the situation I am worrying about.
Let me say I have a model trained with min-max scaled data. I want to test my model, so I also scaled the test dataset with my old scaler which was used in the training stage. However, my new test data's turned out to be the newer minimum, so the scaler returned negative value.
As far as I know, minimum and maximum aren't that stable value, especially in the volatile dataset such as cryptocurrency data. In this case, should I update my scaler? Or should I retrain my model?
I happen to disagree with #Sharan_Sundar. The point of scaling is to bring all of your features onto a single scale, not to rigorously ensure that they lie in the interval [0,1]. This can be very important, especially when considering regularization techniques the penalize large coefficients (whether they be linear regression coefficients or neural network weights). The combination of feature scaling and regularization help to ensure your model generalizes to unobserved data.
Scaling based on your "test" data is not a great idea because in practice, as you pointed out, you can easily observe new data points that don't lie within the bounds of your original observations. Your model needs to be robust to this.
In general, I would recommend considering different scaling routines. scikitlearn's MinMaxScaler is one, as is StandardScaler (subtract mean and divide by standard deviation). In the case where your target variable, cryptocurrency price can vary over multiple orders of magnitude, it might be worth using the logarithm function for scaling some of your variables. This is where data science becomes an art -- there's not necessarily a 'right' answer here.
(EDIT) - Also see: Do you apply min max scaling separately on training and test data?
Ideally you should scale first and then only split into test and train. But its not preferable to use minmax scaler with data which can have dynamically varying min and max values with significant variance in realtime scenario.

Should my seq2seq RNN idea work?

I want to predict stock price.
Normally, people would feed the input as a sequence of stock prices.
Then they would feed the output as the same sequence but shifted to the left.
When testing, they would feed the output of the prediction into the next input timestep like this:
I have another idea, which is to fix the sequence length, for example 50 timesteps.
The input and output are exactly the same sequence.
When training, I replace last 3 elements of the input by zero to let the model know that I have no input for those timesteps.
When testing, I would feed the model a sequence of 50 elements. The last 3 are zeros. The predictions I care are the last 3 elements of the output.
Would this work or is there a flaw in this idea?
The main flaw of this idea is that it does not add anything to the model's learning, and it reduces its capacity, as you force your model to learn identity mapping for first 47 steps (50-3). Note, that providing 0 as inputs is equivalent of not providing input for an RNN, as zero input, after multiplying by a weight matrix is still zero, so the only source of information is bias and output from previous timestep - both are already there in the original formulation. Now second addon, where we have output for first 47 steps - there is nothing to be gained by learning the identity mapping, yet network will have to "pay the price" for it - it will need to use weights to encode this mapping in order not to be penalised.
So in short - yes, your idea will work, but it is nearly impossible to get better results this way as compared to the original approach (as you do not provide any new information, do not really modify learning dynamics, yet you limit capacity by requesting identity mapping to be learned per-step; especially that it is an extremely easy thing to learn, so gradient descent will discover this relation first, before even trying to "model the future").

Inference on several inputs in order to calculate the loss function

I am modeling a perceptual process in tensorflow. In the setup I am interested in, the modeled agent is playing a resource game: it has to choose 1 out of n resouces, by relying only on the label that a classifier gives to the resource. Each resource is an ordered pair of two reals. The classifier only sees the first real, but payoffs depend on the second. There is a function taking first to second.
Anyway, ideally I'd like to train the classifier in the following way:
In each run, the classifier give labels to n resources.
The agent then gets the payoff of the resource corresponding to the highest label in some predetermined ranking (say, A > B > C > D), and randomly in case of draw.
The loss is taken to be the normalized absolute difference between the payoff thus obtained and the maximum payoff in the set of resources. I.e., (Payoff_max - Payoff) / Payoff_max
For this to work, one needs to run inference n times, once for each resource, before calculating the loss. Is there a way to do this in tensorflow? If I am tackling the problem in the wrong way feel free to say so, too.
I don't have much knowledge in ML aspects of this, but from programming point of view, I can see doing it in two ways. One is by copying your model n times. All the copies can share the same variables. The output of all of these copies would go into some function that determines the the highest label. As long as this function is differentiable, variables are shared, and n is not too large, it should work. You would need to feed all n inputs together. Note that, backprop will run through each copy and update your weights n times. This is generally not a problem, but if it is, I heart about some fancy tricks one can do by using partial_run.
Another way is to use tf.while_loop. It is pretty clever - it stores activations from each run of the loop and can do backprop through them. The only tricky part should be to accumulate the inference results before feeding them to your loss. Take a look at TensorArray for this. This question can be helpful: Using TensorArrays in the context of a while_loop to accumulate values

Tensorflow: opt.compute_gradients() returns values different from the weight difference of opt.apply_gradients()

Question: What is the most efficient way to get the delta of my weights in the most efficient way in a TensorFlow network?
Background: I've got the operators hooked up as follows (thanks to this SO question):
self.cost = `the rest of the network`
self.rmsprop = tf.train.RMSPropOptimizer(lr,rms_decay,0.0,rms_eps)
self.comp_grads = self.rmsprop.compute_gradients(self.cost)
self.grad_placeholder = [(tf.placeholder("float", shape=grad[1].get_shape(), name="grad_placeholder"), grad[1]) for grad in self.comp_grads]
self.apply_grads = self.rmsprop.apply_gradients(self.grad_placeholder)
Now, to feed in information, I run the following:
feed_dict = `training variables`
grad_vals = self.sess.run([grad[0] for grad in self.comp_grads], feed_dict=feed_dict)
feed_dict2 = `feed_dict plus gradient values added to self.grad_placeholder`
self.sess.run(self.apply_grads, feed_dict=feed_dict2)
The command of run(self.apply_grads) will update the network weights, but when I compute the differences in the starting and ending weights (run(self.w1)), those numbers are different than what is stored in grad_vals[0]. I figure this is because the RMSPropOptimizer does more to the raw gradients, but I'm not sure what, or where to find out what it does.
So back to the question: How do I get the delta on my weights in the most efficient way? Am I stuck running self.w1.eval(sess) multiple times to get the weights and calc the difference? Is there something that I'm missing with the tf.RMSPropOptimizer function.
Thanks!
RMSprop does not subtract the gradient from the parameters but use more complicated formula involving a combination of:
a momentum, if the corresponding parameter is not 0
a gradient step, rescaled non uniformly (on each coordinate) by the square root of the squared average of the gradient.
For more information you can refer to these slides or this recent paper.
The delta is first computed in memory by tensorflow in the slot variable 'momentum' and then the variable is updated (see the C++ operator).
Thus, you should be able to access it and construct a delta node with delta_w1 = self.rmsprop.get_slot(self.w1, 'momentum'). (I have not tried it yet.)
You can add the weights to the list of things to fetch each run call. Then you can compute the deltas outside of TensorFlow since you will have the iterates. This should be reasonably efficient, although it might incur an extra elementwise difference, but to avoid that you might have to hack around in the guts of the optimizer and find where it puts the update before it applies it and fetch that each step. Fetching the weights each call shouldn't do wasteful extra evaluations of part of the graph at least.
RMSProp does complicated scaling of the learning rate for each weight. Basically it divides the learning rate for a weight by a running average of the magnitudes of recent gradients of that weight.