I want to write a loop in which I increase my variable i, until arr[i] is less or equal than v.
I've tried these two loops but only the first loop is working and I can't tell the difference.
first loop:
do{
i++;
if(arr[i] >= v)
break;
}while(true);
second loop:
do{
i++;
}while(arr[i] <= v)
I was wondering what exactly the second loop is doing that I don't get the expected result.
In the first one you are breaking when the value is greater than or equal to v
In the second one you are breaking when the value is greater than v
The break conditions are different for each loop
For the second one to work correctly,
do{
i++;
}while(arr[i] < v)
Related
I need to calculate the time complexity of the following loop:
for (i = 1; i < n; i++)
{
statements;
}
Assuming n = 10,
Is i < n; control statement going to run for n time and i++; statement for n-1 times? And knowing that i = 1; statement is going to run for a unit of time.
Calculating the total time complexity of the three statements in for-loop yields 1+n+n-1 = 2n and the loop with its statements yields 2n+n-1 = 3n-1 = O(n).
Are my calculations correct to this point?
Yes, your calculations are correct, a for loop like such would have O(n) notation.
Similarly, you could make a calculation like such:
for(int i = 0; i <n*2; i++){
//calculations
}
in this case, the for loop would have a big O notation of O(n^2) (you get the idea)
This loop takes O(n^2) time; math function = n^n This way you can calculate how long your loop need for n 10 or 100 or 1000
This way you can build graphs for loops and such.
as DAle mentioned in the comments the big O notation is not affected by calculations within the loop, only the loop itself.
I have some difficulties in finding time complexity formula (T(n)) of an algorithm for checking if number is prime.
Here is the function :
Is_prime_number (n)
{
if (n==1) return 0;
if (n==2) return 1;
if (n mod 2==0) return 0;
for(i=2; i*i<=n; i+=2)
if(n mod i==0)
return 0;
return 1;
}
Now, I know there are 3 comparisons outside the loop, and therefore
T(n)= 3 + c*sqrt(n), but I am not sure about the value of c in this equation.
The main operation inside the for loop is finding the modulo. According to this article, for finding a%b, the time taken is roughly:
O(n.log(b) for a=q⋅p+r and n=log(a).
So,it depends on the number of bits, a and b have and will be roughly equal to O(log(a).log(b)). So in this case, c would be equal to O(log(a).log(b)).
Can someone please explain how to evaluate the complexity of the following code? Consider that the array_of_size_n is made of positive random numbers in ascending order.
for(i = 0; i < n; i++){
temp = array_of_size_n[i] + last
if(temp > last){
do_something_else(temp); //doesn't change the complexity
last = temp;
i = 0;
}
}
According to my test the growth is linear with a huge constant factor.
Assume last is 0 in the beginning.
It will always pass the first value because the i++ in the loop.
So when it comes to the second value, if it is 1, then last will be added to INT_MAX. Then if(temp > last) will be false forever, hence linear.
The size of the second value will affect how fast last reach INT_MAX.
I'm studying Obj-C and now I'm not understand why my loop isn't work how it should. I know a way i could achieve result with single while loop, but i want to do this through do while and can't figure out whats going wrong.
What i want is, to show integer called triangularNumber for integers 5,10,15.. and so on. There is what i've tried:
for (int i=1; i<51; i++){
int triangularNumber;
do {
triangularNumber = i * (i+1)/2;
NSLog(#"Trianglular number is %i", triangularNumber);
}
while (i%5 == 0);
}
It produce odd results:
1) Condition of i%5==0 is not met, it output 1,3,6,10 then infinite numbers of 15
2) It create an infinite loop
Please tell me, what is wrong in that code and how to fix it. Thanks!
Instead of do while loop within for loop, use if to check whether a number is divisible by 5 or not.
If you want to do it with do while loop, you could do the following:
int i = 5;
int triangularNumber;
do {
triangularNumber = i * (i+1)/2;
NSLog(#"Trianglular number is %i", triangularNumber);
i += 5;
} while (i < 51);
Reason your code is not working:
Within your do while loop, if i say is 5, then you will end up running in infinite loop as you will satisfy your do while loop's condition which is i%5==0
You just need numbers like 5, 10, 15.. so it's just matter of one loop. Now loop starts with 1 till 50, and you are picky in the sense you just need one element of 5, hence to be picky you could use if condition which says print if and only if my i is multiple of 5.
Do while will always enter into loop and will execute it once. So for 1 it will enter and do calculation for triangularNumber as 1 * 2 /2 = 1 and hence your output 1 and checks condition post printing is 1 divisible by 5, no then it comes out and increments i to 2 and follows same routine as above.
I am lost on these code fragments and finding a hard time to find any other similar examples.
//Code fragment 1
sum = 0;
for(i = 0;i < n; i++)
for(J=1;j<i*i;J++)
for(K=0;k<j;k++)
sum++;
I'm guessing it is O(n^4) for fragment 1.
//Code fragment 2
sum = 0;
for( 1; i < n; i++ )
for (j =1;,j < i * i; j++)
if( j % i == 0 )
for( k = 0; k < j; k++)
sum++;
I am very lost on this one. Not sure how does the if statement affects the loop.
Thank you for the help head of time!
The first one is in fact O(n^5). The sum++ line is executed 1^4 times, then 2^4 times, then 3^4, and so on. The sum of powers-of-k has a term in n^(k+1) (see e.g. Faulhaber's formula), so in this case n^5.
For the second one, the way to think about it is that the inner loop only executes when j is a multiple of i. So the second loop may as well be written for (j = 1; j < i * i; j+=i). But this is the same as for (j = 1; j < i; j++). So we now have a sequence of cubes, rather than powers-of-4. The highest term is therefore n^4.
I'm fairly sure the 1st fragment is actually O(n^5).
Because:
n times,
i^2 times, where i is actually half of n (average i for the case, since for each x there is a corresponding n-x that sum to 2n) Which is therefore n^2 / 4 times. (a times)
Then, a times again,
and when you do: n*a*a, or n*n*n/4*n*n/4 = n^5 / 16, or O(n^5)
I believe the second is O(4), because:
It's iterated n times.
Then it's iterated n*n times, (literally n*n/4, but not in O notation)
Then only 1/n are let through by the if (I can't remember how I got this)
Then n*n are repeated.
So, n*n*n*n*n/n = n^4.
With a sum so handy to compute, you could run these for n=10, n=50, and so on, and just look which of O(N^2), O(N^3), O(N^4), O(N^6) is a better match. (Note that the index for the inner-most loop also runs to n*n...)
First off I agree with your assumption for the first scenario. Here is my breakdown for the second.
The If statement will cause the last loop to run only half of the time since an odd value for i*i will only lead to the third inner loop for prime values that i*i can be decomposed into. Bottom line in big-O we ignore constants so I think your looking at O(n^3).