Loop is not doing what expected - objective-c

I'm studying Obj-C and now I'm not understand why my loop isn't work how it should. I know a way i could achieve result with single while loop, but i want to do this through do while and can't figure out whats going wrong.
What i want is, to show integer called triangularNumber for integers 5,10,15.. and so on. There is what i've tried:
for (int i=1; i<51; i++){
int triangularNumber;
do {
triangularNumber = i * (i+1)/2;
NSLog(#"Trianglular number is %i", triangularNumber);
}
while (i%5 == 0);
}
It produce odd results:
1) Condition of i%5==0 is not met, it output 1,3,6,10 then infinite numbers of 15
2) It create an infinite loop
Please tell me, what is wrong in that code and how to fix it. Thanks!

Instead of do while loop within for loop, use if to check whether a number is divisible by 5 or not.
If you want to do it with do while loop, you could do the following:
int i = 5;
int triangularNumber;
do {
triangularNumber = i * (i+1)/2;
NSLog(#"Trianglular number is %i", triangularNumber);
i += 5;
} while (i < 51);
Reason your code is not working:
Within your do while loop, if i say is 5, then you will end up running in infinite loop as you will satisfy your do while loop's condition which is i%5==0
You just need numbers like 5, 10, 15.. so it's just matter of one loop. Now loop starts with 1 till 50, and you are picky in the sense you just need one element of 5, hence to be picky you could use if condition which says print if and only if my i is multiple of 5.
Do while will always enter into loop and will execute it once. So for 1 it will enter and do calculation for triangularNumber as 1 * 2 /2 = 1 and hence your output 1 and checks condition post printing is 1 divisible by 5, no then it comes out and increments i to 2 and follows same routine as above.

Related

While Loop: Challenge for beginners

Challenge:
Use a while loop to increment count by 2 on each repetition of the block of code. Run the code block of your while loop until count is 8
let count = 2;
I just started learning code two days ago, I am not really sure the logic behind what it is I should do, when to use a while loop or logically the difference between that and an infinite loop. I would really appreciate any help
You call while with a condition, in your case while count < 8.
Inside your while loop you increment count by two every iteration until it is 8 or bigger. So it would look like this:
let count = 2;
while (count < 8) {
count = count + 2;
}
When the condition is not true, so when your count is equal or bigger than 8, the inner part of the while loop is not being executed (your while loop terminates).
An example for an infinite while loop would be with the condition "true":
while (true) {
...
}

What is the difference between these two loops?

I want to write a loop in which I increase my variable i, until arr[i] is less or equal than v.
I've tried these two loops but only the first loop is working and I can't tell the difference.
first loop:
do{
i++;
if(arr[i] >= v)
break;
}while(true);
second loop:
do{
i++;
}while(arr[i] <= v)
I was wondering what exactly the second loop is doing that I don't get the expected result.
In the first one you are breaking when the value is greater than or equal to v
In the second one you are breaking when the value is greater than v
The break conditions are different for each loop
For the second one to work correctly,
do{
i++;
}while(arr[i] < v)

Looping until multiple conditions reached in Objective-C

So i am trying to create a program that can find a number that can be divided by numbers 1-20. I know that i will have to use the following simple code concepts:
I know how loops work and how to create a loop that runs until a condition is met. Is there a simple was to run a loop until several conditions are met?
while ( condition1 && condition2 && condition3... ) {}
or
for ( int i = 0; i < n && condition1 && condition2... ) {}
Obviously these will loop while the conditions are true, not until the conditions are met. Its a simple change in the logic though to get the result you want
EDIT
Ane example of the kind of loop youre looking for could be like:
int number = ...;//initialized somewhere, this is what we're checking
BOOL divisible = YES;
for ( int i = 1; i <= 20 && divisible; ++i )
{
if ( (number % i) != 0 )
divisible = NO;//not divisible by i
}
Good answers in play, but I think it's good to mention the break operator in this discussion. Any loop, at any time, can be terminated using this operator. This can be helpful if you do not know all of the parameters which might go out-of-bounds, and you want to have a way of breaking the loop for reasons you may not have explicitly anticipated (i.e. perhaps your connection to a resource is no longer available...)
NSError *error = nil;
while(true) {
// run your app
if(error) {
break;
}
}
If a number is divisible by all numbers from 1 to 20 then it is divisible by the LCM of 1 to 20 so divisibility test is if(!(n%232792560)).
Further if m = pq | n then p|n, q|n so to explicitly test you only need to check for divisibility by primes. i.e if the number is not even then there is no need to check for divisibility by 4, 6, 8, 10, 12, 14, 16, 18 or 20. This reduces the test to the number being congruent to the 8th primorial = 9699690
OK, perhaps on second reading not as explicit as I should like: the expanded test looks like (by de Morgan's theorem)
if(!(n%19 || n%17 || n%16 || n%13 || n%11 || n%9 || n%7 || n%5))
// number is divisible by 1..20

Recognizing when to use the modulus operator

I know the modulus (%) operator calculates the remainder of a division. How can I identify a situation where I would need to use the modulus operator?
I know I can use the modulus operator to see whether a number is even or odd and prime or composite, but that's about it. I don't often think in terms of remainders. I'm sure the modulus operator is useful, and I would like to learn to take advantage of it.
I just have problems identifying where the modulus operator is applicable. In various programming situations, it is difficult for me to see a problem and realize "Hey! The remainder of division would work here!".
Imagine that you have an elapsed time in seconds and you want to convert this to hours, minutes, and seconds:
h = s / 3600;
m = (s / 60) % 60;
s = s % 60;
0 % 3 = 0;
1 % 3 = 1;
2 % 3 = 2;
3 % 3 = 0;
Did you see what it did? At the last step it went back to zero. This could be used in situations like:
To check if N is divisible by M (for example, odd or even)
or
N is a multiple of M.
To put a cap of a particular value. In this case 3.
To get the last M digits of a number -> N % (10^M).
I use it for progress bars and the like that mark progress through a big loop. The progress is only reported every nth time through the loop, or when count%n == 0.
I've used it when restricting a number to a certain multiple:
temp = x - (x % 10); //Restrict x to being a multiple of 10
Wrapping values (like a clock).
Provide finite fields to symmetric key algorithms.
Bitwise operations.
And so on.
One use case I saw recently was when you need to reverse a number. So that 123456 becomes 654321 for example.
int number = 123456;
int reversed = 0;
while ( number > 0 ) {
# The modulus here retrieves the last digit in the specified number
# In the first iteration of this loop it's going to be 6, then 5, ...
# We are multiplying reversed by 10 first, to move the number one decimal place to the left.
# For example, if we are at the second iteration of this loop,
# reversed gonna be 6, so 6 * 10 + 12345 % 10 => 60 + 5
reversed = reversed * 10 + number % 10;
number = number / 10;
}
Example. You have message of X bytes, but in your protocol maximum size is Y and Y < X. Try to write small app that splits message into packets and you will run into mod :)
There are many instances where it is useful.
If you need to restrict a number to be within a certain range you can use mod. For example, to generate a random number between 0 and 99 you might say:
num = MyRandFunction() % 100;
Any time you have division and want to express the remainder other than in decimal, the mod operator is appropriate. Things that come to mind are generally when you want to do something human-readable with the remainder. Listing how many items you could put into buckets and saying "5 left over" is good.
Also, if you're ever in a situation where you may be accruing rounding errors, modulo division is good. If you're dividing by 3 quite often, for example, you don't want to be passing .33333 around as the remainder. Passing the remainder and divisor (i.e. the fraction) is appropriate.
As #jweyrich says, wrapping values. I've found mod very handy when I have a finite list and I want to iterate over it in a loop - like a fixed list of colors for some UI elements, like chart series, where I want all the series to be different, to the extent possible, but when I've run out of colors, just to start over at the beginning. This can also be used with, say, patterns, so that the second time red comes around, it's dashed; the third time, dotted, etc. - but mod is just used to get red, green, blue, red, green, blue, forever.
Calculation of prime numbers
The modulo can be useful to convert and split total minutes to "hours and minutes":
hours = minutes / 60
minutes_left = minutes % 60
In the hours bit we need to strip the decimal portion and that will depend on the language you are using.
We can then rearrange the output accordingly.
Converting linear data structure to matrix structure:
where a is index of linear data, and b is number of items per row:
row = a/b
column = a mod b
Note above is simplified logic: a must be offset -1 before dividing & the result must be normalized +1.
Example: (3 rows of 4)
1 2 3 4
5 6 7 8
9 10 11 12
(7 - 1)/4 + 1 = 2
7 is in row 2
(7 - 1) mod 4 + 1 = 3
7 is in column 3
Another common use of modulus: hashing a number by place. Suppose you wanted to store year & month in a six digit number 195810. month = 195810 mod 100 all digits 3rd from right are divisible by 100 so the remainder is the 2 rightmost digits in this case the month is 10. To extract the year 195810 / 100 yields 1958.
Modulus is also very useful if for some crazy reason you need to do integer division and get a decimal out, and you can't convert the integer into a number that supports decimal division, or if you need to return a fraction instead of a decimal.
I'll be using % as the modulus operator
For example
2/4 = 0
where doing this
2/4 = 0 and 2 % 4 = 2
So you can be really crazy and let's say that you want to allow the user to input a numerator and a divisor, and then show them the result as a whole number, and then a fractional number.
whole Number = numerator/divisor
fractionNumerator = numerator % divisor
fractionDenominator = divisor
Another case where modulus division is useful is if you are increasing or decreasing a number and you want to contain the number to a certain range of number, but when you get to the top or bottom you don't want to just stop. You want to loop up to the bottom or top of the list respectively.
Imagine a function where you are looping through an array.
Function increase Or Decrease(variable As Integer) As Void
n = (n + variable) % (listString.maxIndex + 1)
Print listString[n]
End Function
The reason that it is n = (n + variable) % (listString.maxIndex + 1) is to allow for the max index to be accounted.
Those are just a few of the things that I have had to use modulus for in my programming of not just desktop applications, but in robotics and simulation environments.
Computing the greatest common divisor
Determining if a number is a palindrome
Determining if a number consists of only ...
Determining how many ... a number consists of...
My favorite use is for iteration.
Say you have a counter you are incrementing and want to then grab from a known list a corresponding items, but you only have n items to choose from and you want to repeat a cycle.
var indexFromB = (counter-1)%n+1;
Results (counter=indexFromB) given n=3:
`1=1`
`2=2`
`3=3`
`4=1`
`5=2`
`6=3`
...
Best use of modulus operator I have seen so for is to check if the Array we have is a rotated version of original array.
A = [1,2,3,4,5,6]
B = [5,6,1,2,3,4]
Now how to check if B is rotated version of A ?
Step 1: If A's length is not same as B's length then for sure its not a rotated version.
Step 2: Check the index of first element of A in B. Here first element of A is 1. And its index in B is 2(assuming your programming language has zero based index).
lets store that index in variable "Key"
Step 3: Now how to check that if B is rotated version of A how ??
This is where modulus function rocks :
for (int i = 0; i< A.length; i++)
{
// here modulus function would check the proper order. Key here is 2 which we recieved from Step 2
int j = [Key+i]%A.length;
if (A[i] != B[j])
{
return false;
}
}
return true;
It's an easy way to tell if a number is even or odd. Just do # mod 2, if it is 0 it is even, 1 it is odd.
Often, in a loop, you want to do something every k'th iteration, where k is 0 < k < n, assuming 0 is the start index and n is the length of the loop.
So, you'd do something like:
int k = 5;
int n = 50;
for(int i = 0;i < n;++i)
{
if(i % k == 0) // true at 0, 5, 10, 15..
{
// do something
}
}
Or, you want to keep something whitin a certain bound. Remember, when you take an arbitrary number mod something, it must produce a value between 0 and that number - 1.

Objective C - Random results is either 1 or -1

I am trying randomly generate a positive or negative number and rather then worry about the bigger range I am hoping to randomly generate either 1 or -1 to just multiply by my other random number.
I know this can be done with a longer rule of generating 0 or 1 and then checking return and using that to either multiply by 1 or -1.
Hoping someone knows of an easier way to just randomly set the sign on a number. Trying to keep my code as clean as possible.
I like to use arc4random() because it doesn't require you to seed the random number generator. It also conveniently returns a uint_32_t, so you don't have to worry about the result being between 0 and 1, etc. It'll just give you a random integer.
int myRandom() {
return (arc4random() % 2 ? 1 : -1);
}
If I understand the question correctly, you want a pseudorandom sequence of 1 and -1:
int f(void)
{
return random() & 1 ? 1 : -1;
// or...
// return 2 * (random() & 1) - 1;
// or...
// return ((random() & 1) << 1) - 1;
// or...
// return (random() & 2) - 1; // This one from Chris Lutz
}
Update: Ok, something has been bothering me since I wrote this. One of the frequent weaknesses of common RNGs is that the low order bits can go through short cycles. It's probably best to test a higher-order bit: random() & 0x80000 ? 1 : -1
To generate either 1 or -1 directly, you could do:
int PlusOrMinusOne() {
return (rand() % 2) * 2 - 1
}
But why are you worried about the broader range?
return ( ((arc4random() & 2) * 2) - 1 );
This extra step won't give you any additional "randomness". Just generate your number straight away in the range that you need (e.g. -10..10).
Standard rand() will return a value from this range: 0..1
You can multiply it by a constant to increase the span of the range or you can add a constant to push it left/right on the X-Axis.
E.g. to generate random values from from (-5..10) range you will have:
rand()*15-5
rand will give you a number from 0 to RAND_MAX which will cover every bit in an int except for the sign. By shifting that result left 1 bit you turn the signed MSB into the sign, but have zeroed-out the 0th bit, which you can repopulate with a random bit from another call to rand. The code will look something like:
int my_rand()
{
return (rand() << 1) + (rand() & 1);
}