I am trying to configure a model that I previously trained to classify images in a such a way that it accepts images as base64-strings (instead of a NumPy array), converts them to a NumPy array and then performs the prediction. How do I add a layer on top of my regular input layer that accepts strings and outputs a NumPy array?
So I've already pre-trained a model that predicts images based on the ResNet architecture. Having looked at this and this answer, I am trying to create a Lambda layer that converts strings to RGB jpeg images. I have done this as shown in the sample code below:
image = tf.placeholder(shape=[], dtype=tf.string)
input_tensor = keras.layers.Input(shape = (1,), tensor = image, dtype=tf.string)
x = keras.layers.Lambda(lambda image: tf.image.decode_jpeg(image))(input_tensor)
output_tensor = model(x)
new_model = Model(input_tensor, output_tensor)
Where model() is the Keras keras.models.Model model that I have pre-trained.
I am expecting new_model() to be the new Keras model that has 1 extra layer on top of my previous model, which accepts base64-string and outputs a NumPy array into the next layer.
However, the third line of my code raises the following error:
TypeError: Input 'contents' of 'DecodeJpeg' Op has type float32 that does not match expected type of string.
My understanding of this is that the 'image' in the Lambda layer that uses the decode_jpeg() is a float32 instead of a string, which seems odd to me as I have set the dtype of both the placeholder as well as the Input layer to tf.string.
I have searched all over stackoverflow for this but can't find a solution for this error. It appears this question also has not been able to find a solution for this specific issue.
EDIT 1: corrected typo and added full error message
The full error message is show below:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py in _apply_op_helper(self, op_type_name, name, **keywords)
509 as_ref=input_arg.is_ref,
--> 510 preferred_dtype=default_dtype)
511 except TypeError as err:
~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, ctx)
1103 if ret is None:
-> 1104 ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
1105
~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/ops.py in _TensorTensorConversionFunction(t, dtype, name, as_ref)
946 "Tensor conversion requested dtype %s for Tensor with dtype %s: %r" %
--> 947 (dtype.name, t.dtype.name, str(t)))
948 return t
ValueError: Tensor conversion requested dtype string for Tensor with dtype float32: 'Tensor("lambda_28/Placeholder:0", shape=(?, 1), dtype=float32)'
During handling of the above exception, another exception occurred:
TypeError Traceback (most recent call last)
<ipython-input-47-5793b0703860> in <module>
1 image = tf.placeholder(shape=[], dtype=tf.string)
2 input_tensor = Input(shape = (1,), tensor = image, dtype=tf.string)
----> 3 x = Lambda(lambda image: tf.image.decode_jpeg(image))(input_tensor)
4 output_tensor = model(x)
5
~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/keras/engine/base_layer.py in __call__(self, inputs, **kwargs)
472 if all([s is not None
473 for s in to_list(input_shape)]):
--> 474 output_shape = self.compute_output_shape(input_shape)
475 else:
476 if isinstance(input_shape, list):
~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/keras/layers/core.py in compute_output_shape(self, input_shape)
650 else:
651 x = K.placeholder(shape=input_shape)
--> 652 x = self.call(x)
653 if isinstance(x, list):
654 return [K.int_shape(x_elem) for x_elem in x]
~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/keras/layers/core.py in call(self, inputs, mask)
685 if has_arg(self.function, 'mask'):
686 arguments['mask'] = mask
--> 687 return self.function(inputs, **arguments)
688
689 def compute_mask(self, inputs, mask=None):
<ipython-input-47-5793b0703860> in <lambda>(image)
1 image = tf.placeholder(shape=[], dtype=tf.string)
2 input_tensor = Input(shape = (1,), tensor = image, dtype=tf.string)
----> 3 x = Lambda(lambda image: tf.image.decode_jpeg(image))(input_tensor)
4 output_tensor = model(x)
5
~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/ops/gen_image_ops.py in decode_jpeg(contents, channels, ratio, fancy_upscaling, try_recover_truncated, acceptable_fraction, dct_method, name)
946 try_recover_truncated=try_recover_truncated,
947 acceptable_fraction=acceptable_fraction, dct_method=dct_method,
--> 948 name=name)
949 _result = _op.outputs[:]
950 _inputs_flat = _op.inputs
~/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py in _apply_op_helper(self, op_type_name, name, **keywords)
531 if input_arg.type != types_pb2.DT_INVALID:
532 raise TypeError("%s expected type of %s." %
--> 533 (prefix, dtypes.as_dtype(input_arg.type).name))
534 else:
535 # Update the maps with the default, if needed.
TypeError: Input 'contents' of 'DecodeJpeg' Op has type float32 that does not match expected type of string.
Related
mixed_precision.set_global_policy(policy="mixed_float16") gives an error when I add this line
error =
TypeError Traceback (most recent call
last) in
5 #mixed_precision.set_global_policy(policy="float32")
6 input_shape = (224, 224, 3)
----> 7 base_model = tf.keras.applications.EfficientNetB0(include_top=False)
8 base_model.trainable = False # freeze base model layers
9
4 frames
/usr/local/lib/python3.7/dist-packages/keras/applications/efficientnet.py
in EfficientNetB0(include_top, weights, input_tensor, input_shape,
pooling, classes, classifier_activation, **kwargs)
559 classes=classes,
560 classifier_activation=classifier_activation,
--> 561 **kwargs)
562
563
/usr/local/lib/python3.7/dist-packages/keras/applications/efficientnet.py
in EfficientNet(width_coefficient, depth_coefficient, default_size,
dropout_rate, drop_connect_rate, depth_divisor, activation,
blocks_args, model_name, include_top, weights, input_tensor,
input_shape, pooling, classes, classifier_activation)
332 # original implementation.
333 # See https://github.com/tensorflow/tensorflow/issues/49930 for more details
--> 334 x = x / tf.math.sqrt(IMAGENET_STDDEV_RGB)
335
336 x = layers.ZeroPadding2D(
/usr/local/lib/python3.7/dist-packages/tensorflow/python/util/traceback_utils.py
in error_handler(*args, **kwargs)
151 except Exception as e:
152 filtered_tb = _process_traceback_frames(e.traceback)
--> 153 raise e.with_traceback(filtered_tb) from None
154 finally:
155 del filtered_tb
/usr/local/lib/python3.7/dist-packages/keras/layers/core/tf_op_layer.py
in handle(self, op, args, kwargs)
105 isinstance(x, keras_tensor.KerasTensor)
106 for x in tf.nest.flatten([args, kwargs])):
--> 107 return TFOpLambda(op)(*args, **kwargs)
108 else:
109 return self.NOT_SUPPORTED
/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py
in error_handler(*args, **kwargs)
65 except Exception as e: # pylint: disable=broad-except
66 filtered_tb = _process_traceback_frames(e.traceback)
---> 67 raise e.with_traceback(filtered_tb) from None
68 finally:
69 del filtered_tb
TypeError: Exception encountered when calling layer
"tf.math.truediv_3" (type TFOpLambda).
x and y must have the same dtype, got tf.float16 != tf.float32.
Call arguments received by layer "tf.math.truediv_3" (type
TFOpLambda): • x=tf.Tensor(shape=(None, None, None, 3),
dtype=float16) • y=tf.Tensor(shape=(3,), dtype=float32) •
name=None
this is code =
from tensorflow.keras import layers
# Create base model
mixed_precision.set_global_policy(policy="mixed_float16")
input_shape = (224, 224, 3)
base_model = tf.keras.applications.EfficientNetB0(include_top=False)
base_model.trainable = False # freeze base model layers
# Create Functional model
inputs = layers.Input(shape=input_shape, name="input_layer")
# Note: EfficientNetBX models have rescaling built-in but if your model didn't you could have a layer like below
# x = layers.Rescaling(1./255)(x)
x = base_model(inputs, training=False) # set base_model to inference mode only
x = layers.GlobalAveragePooling2D(name="pooling_layer")(x)
x = layers.Dense(len(class_names))(x) # want one output neuron per class
# Separate activation of output layer so we can output float32 activations
outputs = layers.Activation("softmax", dtype=tf.float32, name="softmax_float32")(x)
model = tf.keras.Model(inputs, outputs)
# Compile the model
model.compile(loss="sparse_categorical_crossentropy", # Use sparse_categorical_crossentropy when labels are *not* one-hot
optimizer=tf.keras.optimizers.Adam(),
metrics=["accuracy"])
When I change this line with float32 instead of mixed_float16,like
this mixed_precision.set_global_policy(policy="float32") the
error goes away. I want to use Mixed_precision, how can I do it?
class CropLayer(layers.Layer):
def __init__(self, crop_t, **kwargs):
super().__init__(**kwargs)
self.crop_t = crop_t
def get_config(self):
config = super().get_config()
config.update({'crop_t': self.crop_t})
return config
def call(self, inputs):
outputs = []
for i, x in enumerate(inputs):
t = tf.shape(x[0])[0]
start = tf.experimental.numpy.random.randint(0, t-self.crop_t, dtype='int32')
end = start + self.crop_t
outputs.append(inputs[i, :, start:end].to_list())
return tf.constant(outputs)
def get_cropper(crop_t):
return keras.Sequential(
[
keras.Input(shape=(N, None), ragged=True),
CropLayer(crop_t)
]
)
cropper = get_cropper(crop_t)
I want to make a custom layer that the ragged tensor as input and tensor as output.
The layer crop ragged tensors to fit the size, so it can convert to tensor format. But when I run this code, the following error occurs.
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-96-6430b3383331> in <module>()
----> 1 cropperr = get_cropper(crop_t)
3 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/autograph/impl/api.py in wrapper(*args, **kwargs)
690 except Exception as e: # pylint:disable=broad-except
691 if hasattr(e, 'ag_error_metadata'):
--> 692 raise e.ag_error_metadata.to_exception(e)
693 else:
694 raise
ValueError: Exception encountered when calling layer "crop_layer_7" (type CropLayer).
in user code:
File "<ipython-input-93-419907fac9d0>", line 31, in call *
outputs.append(inputs[i, :, start:end].to_list())
ValueError: to_list can only be used in eager mode.
I have pre trained model with Accuracy of 96 with 2 epochs and I am trying to use that model on new dataset of 20k tweets for sentiment analysis. while doing that I am getting below error.
I haven't faced any issues while training model with same size of data but not sure why I am getting while using that model.
ResourceExhaustedError: OOM when allocating tensor with shape[1079190,768] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [Op:ResourceGather]
Code:
from transformers import BertTokenizer, TFBertForSequenceClassification
from transformers import InputExample,InputFeatures
model = TFBertForSequenceClassification.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model.summary()
Model: "tf_bert_for_sequence_classification"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
bert (TFBertMainLayer) multiple 109482240
_________________________________________________________________
dropout_37 (Dropout) multiple 0
_________________________________________________________________
classifier (Dense) multiple 1538
=================================================================
Total params: 109,483,778
Trainable params: 109,483,778
Non-trainable params: 0
train = tf.keras.preprocessing.text_dataset_from_directory('aclImdb/train',batch_size=30000,validation_split=0.2,
subset='training',seed=123)
test = tf.keras.preprocessing.text_dataset_from_directory('aclImdb/train',batch_size=30000,validation_split=0.2,
subset='validation',seed=123)
Found 25000 files belonging to 2 classes.
Using 20000 files for training.
Found 25000 files belonging to 2 classes.
Using 5000 files for validation.
for data in train.take(1):
train_feat = data[0].numpy()
train_lab = data[1].numpy()
train = pd.DataFrame([train_feat,train_lab]).T
train.columns = ['DATA_COLUMN','LABEL_COLUMN']
train['DATA_COLUMN'] = train['DATA_COLUMN'].str.decode('utf-8')
for data in test.take(1):
test_feat = data[0].numpy()
test_lab = data[1].numpy()
test = pd.DataFrame([test_feat,test_lab]).T
test.columns = ['DATA_COLUMN','LABEL_COLUMN']
test['DATA_COLUMN'] = test['DATA_COLUMN'].str.decode('utf-8')
test.head()
def convert_data_to_examples(train, test, DATA_COLUMN, LABEL_COLUMN):
train_InputExamples = train.apply(lambda x: InputExample(guid=None, # Globally unique ID for bookkeeping, unused in this case
text_a = x[DATA_COLUMN],
text_b = None,
label = x[LABEL_COLUMN]), axis = 1)
validation_InputExamples = test.apply(lambda x: InputExample(guid=None, # Globally unique ID for bookkeeping, unused in this case
text_a = x[DATA_COLUMN],
text_b = None,
label = x[LABEL_COLUMN]), axis = 1)
return train_InputExamples, validation_InputExamples
train_InputExamples, validation_InputExamples = convert_data_to_examples(train,
test,
'DATA_COLUMN',
'LABEL_COLUMN')
def convert_examples_to_tf_dataset(examples, tokenizer, max_length=128):
features = [] # -> will hold InputFeatures to be converted later
for e in examples:
# Documentation is really strong for this method, so please take a look at it
input_dict = tokenizer.encode_plus(
e.text_a,
add_special_tokens=True,
max_length=max_length, # truncates if len(s) > max_length
return_token_type_ids=True,
return_attention_mask=True,
pad_to_max_length=True, # pads to the right by default # CHECK THIS for pad_to_max_length
truncation=True
)
input_ids, token_type_ids, attention_mask = (input_dict["input_ids"],
input_dict["token_type_ids"], input_dict['attention_mask'])
features.append(
InputFeatures(
input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, label=e.label
)
)
def gen():
for f in features:
yield (
{
"input_ids": f.input_ids,
"attention_mask": f.attention_mask,
"token_type_ids": f.token_type_ids,
},
f.label,
)
return tf.data.Dataset.from_generator(
gen,
({"input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32}, tf.int64),
(
{
"input_ids": tf.TensorShape([None]),
"attention_mask": tf.TensorShape([None]),
"token_type_ids": tf.TensorShape([None]),
},
tf.TensorShape([]),
),
)
DATA_COLUMN = 'DATA_COLUMN'
LABEL_COLUMN = 'LABEL_COLUMN'
# We can call the functions we created above with the following lines:
train_InputExamples,validation_InputExamples = convert_data_to_examples(train,test,DATA_COLUMN,LABEL_COLUMN)
train_data = convert_examples_to_tf_dataset(list(train_InputExamples),tokenizer)
train_data = train_data.shuffle(100).batch(32).repeat(2)
validation_data = convert_examples_to_tf_dataset(list(validation_InputExamples),tokenizer)
validation_data = validation_data.shuffle(100).batch(32)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy('accuracy')])
model.fit(train_data, epochs=2, validation_data=validation_data)
#this is my new data with 20k rows on which I want to run pretrained model:
tweets_list = statement_df['sentiment'].tolist()
#this part of the code is serving that purpose
tf_batch = tokenizer(tweets_list, max_length=128, padding=True, truncation=True, return_tensors='tf')
#print(tf_batch)
tf_outputs = model(tf_batch) # this line is thrown OOM issues
tf_predictions = tf.nn.softmax(tf_outputs[0], axis=-1)
labels = ['Negative','Positive']
label = tf.argmax(tf_predictions, axis=1)
label = label.numpy()
for i in range(len(tweets_list)):
print(tweets_list[i], ": \n", labels[label[i]])
Error:
/usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
199 """Call target, and fall back on dispatchers if there is a TypeError."""
200 try:
--> 201 return target(*args, **kwargs)
202 except (TypeError, ValueError):
203 # Note: convert_to_eager_tensor currently raises a ValueError, not a
/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/array_ops.py in gather_v2(params, indices, validate_indices, axis, batch_dims, name)
4830 name=name,
4831 axis=axis,
-> 4832 batch_dims=batch_dims)
4833
4834
/usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py in wrapper(*args, **kwargs)
199 """Call target, and fall back on dispatchers if there is a TypeError."""
200 try:
--> 201 return target(*args, **kwargs)
202 except (TypeError, ValueError):
203 # Note: convert_to_eager_tensor currently raises a ValueError, not a
/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/array_ops.py in gather(***failed resolving arguments***)
4811 # TODO(apassos) find a less bad way of detecting resource variables
4812 # without introducing a circular dependency.
-> 4813 return params.sparse_read(indices, name=name)
4814 except AttributeError:
4815 return gen_array_ops.gather_v2(params, indices, axis, name=name)
/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/resource_variable_ops.py in sparse_read(self, indices, name)
701 variable_accessed(self)
702 value = gen_resource_variable_ops.resource_gather(
--> 703 self._handle, indices, dtype=self._dtype, name=name)
704
705 if self._dtype == dtypes.variant:
/usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/gen_resource_variable_ops.py in resource_gather(resource, indices, dtype, batch_dims, validate_indices, name)
547 return _result
548 except _core._NotOkStatusException as e:
--> 549 _ops.raise_from_not_ok_status(e, name)
550 except _core._FallbackException:
551 pass
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/ops.py in raise_from_not_ok_status(e, name)
6860 message = e.message + (" name: " + name if name is not None else "")
6861 # pylint: disable=protected-access
-> 6862 six.raise_from(core._status_to_exception(e.code, message), None)
6863 # pylint: enable=protected-access
6864
/usr/local/lib/python3.7/dist-packages/six.py in raise_from(value, from_value)
ResourceExhaustedError: OOM when allocating tensor with shape[1079190,768] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [Op:ResourceGather]
I'm trying to write a custom activation function for use with Keras. I can not write it with tensorflow primitives as it does properly compute the derivative. I followed How to make a custom activation function with only Python in Tensorflow? and it works very we in creating a tensorflow function. However, when I tried putting it into Keras as an activation function for the classic MNIST demo. I got errors. I also tried the tf_spiky function from the above reference.
Here is the sample code
tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf_spiky),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)])
Here's my entire error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-48-73a57f81db19> in <module>
3 tf.keras.layers.Dense(512, activation=tf_spiky),
4 tf.keras.layers.Dropout(0.2),
----> 5 tf.keras.layers.Dense(10, activation=tf.nn.softmax)])
6 x=tf.keras.layers.Activation(tf_spiky)
7 y=tf.keras.layers.Flatten(input_shape=(28, 28))
/opt/conda/lib/python3.6/site-packages/tensorflow/python/training/checkpointable/base.py in _method_wrapper(self, *args, **kwargs)
472 self._setattr_tracking = False # pylint: disable=protected-access
473 try:
--> 474 method(self, *args, **kwargs)
475 finally:
476 self._setattr_tracking = previous_value # pylint: disable=protected-access
/opt/conda/lib/python3.6/site-packages/tensorflow/python/keras/engine/sequential.py in __init__(self, layers, name)
106 if layers:
107 for layer in layers:
--> 108 self.add(layer)
109
110 #property
/opt/conda/lib/python3.6/site-packages/tensorflow/python/training/checkpointable/base.py in _method_wrapper(self, *args, **kwargs)
472 self._setattr_tracking = False # pylint: disable=protected-access
473 try:
--> 474 method(self, *args, **kwargs)
475 finally:
476 self._setattr_tracking = previous_value # pylint: disable=protected-access
/opt/conda/lib/python3.6/site-packages/tensorflow/python/keras/engine/sequential.py in add(self, layer)
173 # If the model is being built continuously on top of an input layer:
174 # refresh its output.
--> 175 output_tensor = layer(self.outputs[0])
176 if isinstance(output_tensor, list):
177 raise TypeError('All layers in a Sequential model '
/opt/conda/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
728
729 # Check input assumptions set before layer building, e.g. input rank.
--> 730 self._assert_input_compatibility(inputs)
731 if input_list and self._dtype is None:
732 try:
/opt/conda/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in _assert_input_compatibility(self, inputs)
1463 if x.shape.ndims is None:
1464 raise ValueError('Input ' + str(input_index) + ' of layer ' +
-> 1465 self.name + ' is incompatible with the layer: '
1466 'its rank is undefined, but the layer requires a '
1467 'defined rank.')
ValueError: Input 0 of layer dense_1 is incompatible with the layer: its rank is undefined, but the layer requires a defined rank.
From this I gather the last Dense layer is unable to get the dimensions of the output after the activation function or something to that. I did see in the tensorflow code that many activation functions register a shape. But either I'm not doing that correctly or I'm going in the wrong direction. But I'm guessing something needs to be done to the tensorflow function to make it an activation function that Keras can use.
I would appreciate any help you can give.
As requested here is the sample codes for tf_spiky, it works as described in the above reference. However, once put into Keras I get the errors shown. This is pretty much as shown in the *How to make a custom activation function with only Python in Tensorflow?" stackoverflow article.
def spiky(x):
print(x)
r = x % 1
if r <= 0.5:
return r
else:
return 0
def d_spiky(x):
r = x % 1
if r <= 0.5:
return 1
else:
return 0
np_spiky = np.vectorize(spiky)
np_d_spiky = np.vectorize(d_spiky)
np_d_spiky_32 = lambda x: np_d_spiky(x).astype(np.float32)
import tensorflow as tf
from tensorflow.python.framework import ops
def tf_d_spiky(x,name=None):
with tf.name_scope(name, "d_spiky", [x]) as name:
y = tf.py_func(np_d_spiky_32,
[x],
[tf.float32],
name=name,
stateful=False)
return y[0]
def py_func(func, inp, Tout, stateful=True, name=None, grad=None):
# Need to generate a unique name to avoid duplicates:
rnd_name = 'PyFuncGrad' + str(np.random.randint(0, 1E+8))
tf.RegisterGradient(rnd_name)(grad) # see _MySquareGrad for grad example
g = tf.get_default_graph()
with g.gradient_override_map({"PyFunc": rnd_name}):
return tf.py_func(func, inp, Tout, stateful=stateful, name=name)
def spikygrad(op, grad):
x = op.inputs[0]
n_gr = tf_d_spiky(x)
return grad * n_gr
np_spiky_32 = lambda x: np_spiky(x).astype(np.float32)
def tf_spiky(x, name=None):
with tf.name_scope(name, "spiky", [x]) as name:
y = py_func(np_spiky_32,
[x],
[tf.float32],
name=name,
grad=spikygrad) # <-- here's the call to the gradient
return y[0]
The solution is in this post Output from TensorFlow `py_func` has unknown rank/shape
The easiest fix is to add y[0].set_shape(x.get_shape()) before the return statement in the definition of tf_spiky.
Perhaps someone out there knows how to properly work with tensorflow shape functions. Digging around I found a unchanged_shape shape function in tensorflow.python.framework.common_shapes, which be appropriate here, but I don't know how to attach it to the tf_spiky function. Seems a python decorator is in order here. It would probably be a service to others to explain customizing tensorflow functions with shape functions.
I'm going over the Book Deep Learning with Python from F. Chollet.
https://www.manning.com/books/deep-learning-with-python
I'm trying to follow along with the code examples. I just installed keras, and I am getting this error when trying to run this:
from this notebook:
https://github.com/fchollet/deep-learning-with-python-notebooks/blob/master/2.1-a-first-look-at-a-neural-network.ipynb
from keras import models
from keras import layers
network = models.Sequential()
network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
network.add(layers.Dense(10, activation='softmax'))
TypeError Traceback (most recent call
last) in ()
4 network = models.Sequential()
5 network.add(layers.Dense(512, activation='relu', input_shape=(28 * 28,)))
----> 6 network.add(layers.Dense(10, activation='softmax'))
~/anaconda3/lib/python3.6/site-packages/keras/engine/sequential.py in
add(self, layer)
179 self.inputs = network.get_source_inputs(self.outputs[0])
180 elif self.outputs:
--> 181 output_tensor = layer(self.outputs[0])
182 if isinstance(output_tensor, list):
183 raise TypeError('All layers in a Sequential model '
~/anaconda3/lib/python3.6/site-packages/keras/engine/base_layer.py in
call(self, inputs, **kwargs)
455 # Actually call the layer,
456 # collecting output(s), mask(s), and shape(s).
--> 457 output = self.call(inputs, **kwargs)
458 output_mask = self.compute_mask(inputs, previous_mask)
459
~/anaconda3/lib/python3.6/site-packages/keras/layers/core.py in
call(self, inputs)
881 output = K.bias_add(output, self.bias, data_format='channels_last')
882 if self.activation is not None:
--> 883 output = self.activation(output)
884 return output
885
~/anaconda3/lib/python3.6/site-packages/keras/activations.py in
softmax(x, axis)
29 raise ValueError('Cannot apply softmax to a tensor that is 1D')
30 elif ndim == 2:
---> 31 return K.softmax(x)
32 elif ndim > 2:
33 e = K.exp(x - K.max(x, axis=axis, keepdims=True))
~/anaconda3/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py
in softmax(x, axis) 3229 A tensor. 3230 """
-> 3231 return tf.nn.softmax(x, axis=axis) 3232 3233
TypeError: softmax() got an unexpected keyword argument 'axis'
I'm wondering if there's something off with my installation?
keras.__version__
2.2.4
If anyone could give me a clue of what to look into.
Seems like you have an incompatible Tensorflow version (which Keras is using as a backend). For details look here