How to speed up simple linear algebra optimization probelm in Julia? - optimization
I implemented the LSDD changepoint detection method decribed in [1] in Julia, to see if I could make it faster than the existing python implementation [2], which is based on a grid search that looks for the optimal parameters.
I obtain the desired results but despite my best efforts, my grid search version of it takes about the same time to compute as the python one, which is still way too long for real applications.
I also tried using the Optimize package which only makes things worse (2 or 3 times slower).
Here is the grid search that I implemented :
using Random
using LinearAlgebra
function squared_distance(X::Array{Float64,1},C::Array{Float64,1})
sqd = zeros(length(X),length(C))
for i in 1:length(X)
for j in 1:length(C)
sqd[i,j] = X[i]^2 + C[j]^2 - 2*X[i]*C[j]
end
end
return sqd
end
function lsdd(x::Array{Float64,1},y::Array{Float64,1}; folds = 5, sigma_list = nothing , lambda_list = nothing)
lx,ly = length(x), length(y)
b = min(lx+ly,300)
C = shuffle(vcat(x,y))[1:b]
CC_dist2 = squared_distance(C,C)
xC_dist2, yC_dist2 = squared_distance(x,C), squared_distance(y,C)
Tx,Ty = length(x) - div(lx,folds), length(y) - div(ly,folds)
#Define the training and testing data sets
cv_split1, cv_split2 = floor.(collect(1:lx)*folds/lx), floor.(collect(1:ly)*folds/ly)
cv_index1, cv_index2 = shuffle(cv_split1), shuffle(cv_split2)
tr_idx1,tr_idx2 = [findall(x->x!=i,cv_index1) for i in 1:folds], [findall(x->x!=i,cv_index2) for i in 1:folds]
te_idx1,te_idx2 = [findall(x->x==i,cv_index1) for i in 1:folds], [findall(x->x==i,cv_index2) for i in 1:folds]
xTr_dist, yTr_dist = [xC_dist2[i,:] for i in tr_idx1], [yC_dist2[i,:] for i in tr_idx2]
xTe_dist, yTe_dist = [xC_dist2[i,:] for i in te_idx1], [yC_dist2[i,:] for i in te_idx2]
if sigma_list == nothing
sigma_list = [0.25, 0.5, 0.75, 1, 1.2, 1.5, 2, 2.5, 2.2, 3, 5]
end
if lambda_list == nothing
lambda_list = [1.00000000e-03, 3.16227766e-03, 1.00000000e-02, 3.16227766e-02,
1.00000000e-01, 3.16227766e-01, 1.00000000e+00, 3.16227766e+00,
1.00000000e+01]
end
#memory prealocation
score_cv = zeros(length(sigma_list),length(lambda_list))
H = zeros(b,b)
hx_tr, hy_tr = [zeros(b,1) for i in 1:folds], [zeros(b,1) for i in 1:folds]
hx_te, hy_te = [zeros(1,b) for i in 1:folds], [zeros(1,b) for i in 1:folds]
#h_tr,h_te = zeros(b,1), zeros(1,b)
theta = zeros(b)
for (sigma_idx,sigma) in enumerate(sigma_list)
#the expression of H is different for higher dimension
#H = sqrt((sigma^2)*pi)*exp.(-CC_dist2/(4*sigma^2))
set_H(H,CC_dist2,sigma,b)
#check if the sum is performed along the right dimension
set_htr(hx_tr,xTr_dist,sigma,Tx), set_htr(hy_tr,yTr_dist,sigma,Ty)
set_hte(hx_te,xTe_dist,sigma,lx-Tx), set_hte(hy_te,yTe_dist,sigma,ly-Ty)
for i in 1:folds
h_tr = hx_tr[i] - hy_tr[i]
h_te = hx_te[i] - hy_te[i]
#set_h(h_tr,hx_tr[i],hy_tr[i],b)
#set_h(h_te,hx_te[i],hy_te[i],b)
for (lambda_idx,lambda) in enumerate(lambda_list)
set_theta(theta,H,lambda,h_tr,b)
score_cv[sigma_idx,lambda_idx] += dot(theta,H*theta) - 2*dot(theta,h_te)
end
end
end
#retrieve the value of the optimal parameters
sigma_chosen = sigma_list[findmin(score_cv)[2][2]]
lambda_chosen = lambda_list[findmin(score_cv)[2][2]]
#calculating the new "optimal" solution
H = sqrt((sigma_chosen^2)*pi)*exp.(-CC_dist2/(4*sigma_chosen^2))
H_lambda = H + lambda_chosen*Matrix{Float64}(I, b, b)
h = (1/lx)*sum(exp.(-xC_dist2/(2*sigma_chosen^2)),dims = 1) - (1/ly)*sum(exp.(-yC_dist2/(2*sigma_chosen^2)),dims = 1)
theta_final = H_lambda\transpose(h)
f = transpose(theta_final).*sum(exp.(-vcat(xC_dist2,yC_dist2)/(2*sigma_chosen^2)),dims = 1)
L2 = 2*dot(theta_final,h) - dot(theta_final,H*theta_final)
return L2
end
function set_H(H::Array{Float64,2},dist::Array{Float64,2},sigma::Float64,b::Int16)
for i in 1:b
for j in 1:b
H[i,j] = sqrt((sigma^2)*pi)*exp(-dist[i,j]/(4*sigma^2))
end
end
end
function set_theta(theta::Array{Float64,1},H::Array{Float64,2},lambda::Float64,h::Array{Float64,2},b::Int64)
Hl = (H + lambda*Matrix{Float64}(I, b, b))
LAPACK.posv!('L', Hl, h)
theta = h
end
function set_htr(h::Array{Float64,1},dists::Array{Float64,2},sigma::Float64,T::Int16)
for (CVidx,dist) in enumerate(dists)
for (idx,value) in enumerate((1/T)*sum(exp.(-dist/(2*sigma^2)),dims = 1))
h[CVidx][idx] = value
end
end
end
function set_hte(h::Array{Float64,1},dists::Array{Float64,2},sigma::Array{Float64,1},T::Int16)
for (CVidx,dist) in enumerate(dists)
for (idx,value) in enumerate((1/T)*sum(exp.(-dist/(2*sigma^2)),dims = 1))
h[CVidx][idx] = value
end
end
end
function set_h(h,h1,h2,b)
for i in 1:b
h[i] = h1[i] - h2[i]
end
end
The set_H, set_h and set_theta functions are there because I read somewhere that modifying prealocated memory in place with a function was faster, but it did not make a great difference.
To test it, I use two random distribution as input data :
x,y = rand(500),1.5*rand(500)
lsdd(x,y) #returns a value around 0.3
Now here is the version of the code where I try to use Optimizer :
function Theta(sigma::Float64,lambda::Float64,x::Array{Float64,1},y::Array{Float64,1},folds::Int8)
lx,ly = length(x), length(y)
b = min(lx+ly,300)
C = shuffle(vcat(x,y))[1:b]
CC_dist2 = squared_distance(C,C)
xC_dist2, yC_dist2 = squared_distance(x,C), squared_distance(y,C)
#the subsets are not be mutually exclusive !
Tx,Ty = length(x) - div(lx,folds), length(y) - div(ly,folds)
shuffled_x, shuffled_y = [shuffle(1:lx) for i in 1:folds], [shuffle(1:ly) for i in 1:folds]
cv_index1, cv_index2 = floor.(collect(1:lx)*folds/lx)[shuffle(1:lx)], floor.(collect(1:ly)*folds/ly)[shuffle(1:ly)]
tr_idx1,tr_idx2 = [i[1:Tx] for i in shuffled_x], [i[1:Ty] for i in shuffled_y]
te_idx1,te_idx2 = [i[Tx:end] for i in shuffled_x], [i[Ty:end] for i in shuffled_y]
xTr_dist, yTr_dist = [xC_dist2[i,:] for i in tr_idx1], [yC_dist2[i,:] for i in tr_idx2]
xTe_dist, yTe_dist = [xC_dist2[i,:] for i in te_idx1], [yC_dist2[i,:] for i in te_idx2]
score_cv = 0
Id = Matrix{Float64}(I, b, b)
H = sqrt((sigma^2)*pi)*exp.(-CC_dist2/(4*sigma^2))
hx_tr, hy_tr = [transpose((1/Tx)*sum(exp.(-dist/(2*sigma^2)),dims = 1)) for dist in xTr_dist], [transpose((1/Ty)*sum(exp.(-dist/(2*sigma^2)),dims = 1)) for dist in yTr_dist]
hx_te, hy_te = [(lx-Tx)*sum(exp.(-dist/(2*sigma^2)),dims = 1) for dist in xTe_dist], [(ly-Ty)*sum(exp.(-dist/(2*sigma^2)),dims = 1) for dist in yTe_dist]
for i in 1:folds
h_tr, h_te = hx_tr[i] - hy_tr[i], hx_te[i] - hy_te[i]
#theta = (H + lambda * Id)\h_tr
theta = copy(h_tr)
Hl = (H + lambda*Matrix{Float64}(I, b, b))
LAPACK.posv!('L', Hl, theta)
score_cv += dot(theta,H*theta) - 2*dot(theta,h_te)
end
return score_cv,(CC_dist2,xC_dist2,yC_dist2)
end
function cost(params::Array{Float64,1},x::Array{Float64,1},y::Array{Float64,1},folds::Int8)
s,l = params[1],params[2]
return Theta(s,l,x,y,folds)[1]
end
"""
Performs the optinization
"""
function lsdd3(x::Array{Float64,1},y::Array{Float64,1}; folds = 4)
start = [1,0.1]
b = min(length(x)+length(y),300)
lx,ly = length(x),length(y)
#result = optimize(params -> cost(params,x,y,folds),fill(0.0,2),fill(50.0,2),start, Fminbox(LBFGS(linesearch=LineSearches.BackTracking())); autodiff = :forward)
result = optimize(params -> cost(params,x,y,folds),start, BFGS(),Optim.Options(f_calls_limit = 5, iterations = 5))
#bboptimize(rosenbrock2d; SearchRange = [(-5.0, 5.0), (-2.0, 2.0)])
#result = optimize(cost,[0,0],[Inf,Inf],start, Fminbox(AcceleratedGradientDescent()))
sigma_chosen,lambda_chosen = Optim.minimizer(result)
CC_dist2, xC_dist2, yC_dist2 = Theta(sigma_chosen,lambda_chosen,x,y,folds)[2]
H = sqrt((sigma_chosen^2)*pi)*exp.(-CC_dist2/(4*sigma_chosen^2))
h = (1/lx)*sum(exp.(-xC_dist2/(2*sigma_chosen^2)),dims = 1) - (1/ly)*sum(exp.(-yC_dist2/(2*sigma_chosen^2)),dims = 1)
theta_final = (H + lambda_chosen*Matrix{Float64}(I, b, b))\transpose(h)
f = transpose(theta_final).*sum(exp.(-vcat(xC_dist2,yC_dist2)/(2*sigma_chosen^2)),dims = 1)
L2 = 2*dot(theta_final,h) - dot(theta_final,H*theta_final)
return L2
end
No matter, which kind of option I use in the optimizer, I always end up with something too slow. Maybe the grid search is the best option, but I don't know how to make it faster... Does anyone have an idea how I could proceed further ?
[1] : http://www.mcduplessis.com/wp-content/uploads/2016/05/Journal-IEICE-2014-CLSDD-1.pdf
[2] : http://www.ms.k.u-tokyo.ac.jp/software.html
Related
Julia DifferentialEquations.jl all variable output
I have the following example: using DifferentialEquations function test1(du,u,p,t) a,b,c = p d=a^0.1*(t+1) e=u[1]/a f=u[2]/d du[1] = a*u[1] du[2] = d*u[2] du[3] = b*u[2] - c*u[3] end p = (2,0.75,0.8) u0 = [1.0;1.0;1.0] tspan = (0.0,3.0) prob = ODEProblem(test1,u0,tspan,p) sol = solve(prob,saveat=0.3) The sol objects contain state outputs but, I need efficiently other variables ("d","e","f") as well. The closest I can get is: function test2(du,u,p,t) global i global Out_values global sampletimes a,b,c = p d=a^0.1*(t+1) e=u[1]/a f=u[2]/d if t in sampletimes Out_values[1,i] = d Out_values[2,i] = e Out_values[3,i] = f i=i+1 end du[1] = a*u[1] du[2] = d*u[2] du[3] = b*u[2] - c*u[3] end sampletimes = tspan[1]:0.3:tspan[2] Out_values = Array{Float64}(undef, 3, 2*11) i=1 prob = ODEProblem(test2,u0,tspan,p) sol = solve(prob,saveat=0.3,tstops=sampletimes) However, this solution is not ideal because: it duplicates saveat and I get two sets of slightly different outputs (not sure why), and it can't expand if I decide not to use saveat and I want to output all solutions, i.e. sol = solve(prob). Any help is appreciated.
Getting the charge of a single atom, per loop in MD Analysis
I have been trying to use the partial charge of one particular ion to go through a calculation within mdanalysis. I have tried(This is just a snippet from the code that I know is throwing the error): Cl = u.select_atoms('resname CLA and prop z <= 79.14') Lz = 79.14 #Determined from system set-up Q_sum = 0 COM = 38.42979431152344 #Determined from VMD file_object1 = open(fors, 'a') print(dcd, file = file_object1) for ts in u.trajectory[200:]: frame = u.trajectory.frame time = u.trajectory.time for coord in Cl.positions: q= Cl.total_charge(Cl.position[coord][2]) coords = coord - (Lz/COM) q_prof = q * (coords + (Lz / 2)) / Lz Q_sum = Q_sum + q_prof print(q) But I keep getting an error associated with this. How would I go about selecting this particular atom as it goes through the loop to get the charge of it in MD Analysis? Before I was setting q to equal a constant and the code ran fine so I know it is only this line that is throwing the error: q = Cl.total_charge(Cl.position[coord][2]) Thanks for the help!
I figured it out with: def Q_code(dcd, topo): Lz = u.dimensions[2] Q_sum = 0 count = 0 CLAs = u.select_atoms('segid IONS or segid PROA or segid PROB or segid MEMB') ini_frames = -200 n_frames = len(u.trajectory[ini_frames:]) for ts in u.trajectory[ini_frames:]: count += 1 membrane = u.select_atoms('segid PROA or segid PROB or segid MEMB') COM = membrane.atoms.center_of_mass()[2] q_prof = CLAs.atoms.charges * (CLAs.positions[:,2] + (Lz/2 - COM))/Lz Q_instant = np.sum(q_prof) Q_sum += Q_instant Q_av = Q_sum / n_frames with open('Q_av.txt', 'a') as f: print('The Q_av for {} is {}'.format(s, Q_av), file = f) return Q_av
Solving 15Puzzle with Julia
I'm trying to use Julia to solve the common tile game 15 Puzzle using Julia using A* algorithm. I am quite new to the language and my style may seem very C like. When I try the following code, I run out of memory. I'm not sure if its related to the use of a pointer style in my structs or just bad design. struct Node parent f::Int64 board::Array{Int64,1} end function findblank(A::Array{Int64,1}) x = size(A,1) for i = 1:x if A[i] == x return i end end return -1 end function up(A::Array{Int64,1}) N = size(A,1) Nsq = isqrt(N) blank = findblank(A) B = copy(A) if blank / Nsq <= 1 return nothing end B[blank-Nsq],B[blank] = B[blank],B[blank-Nsq] return B end function down(A::Array{Int64,1}) N = size(A,1) Nsq = isqrt(N) blank = findblank(A) B = copy(A) if (blank / Nsq) > (Nsq -1) return nothing end B[blank+Nsq],B[blank] = B[blank],B[blank+Nsq] return B end function left(A::Array{Int64,1}) N = size(A,1) Nsq = isqrt(N) blank = findblank(A) B = copy(A) if (blank % Nsq) == 1 return nothing end B[blank-1],B[blank] = B[blank],B[blank-1] return B end function right(A::Array{Int64,1}) N = size(A,1) Nsq = isqrt(N) blank = findblank(A) B = copy(A) if (blank % Nsq) == 0 return nothing end B[blank+1],B[blank] = B[blank],B[blank+1] return B end function manhattan(A::Array{Int64,1}) N = size(A,1) Nsq = isqrt(N) r = 0 for i in 1:N if (A[i]==i || A[i]==N) continue end row1 = floor((A[i]-1) / Nsq) col1 = (A[i]-1) % Nsq row2 = floor((i-1) / Nsq) col2 = (i-1) % Nsq r+= abs(row1 - row2) + abs(col1 - col2) end return r end # start = [1,2,3,4,5,6,7,9,8] # start = [6,5,4,1,7,3,9,8,2] #26 moves start = [7,8,4,11,12,14,10,15,16,5,3,13,2,1,9,6] # 50 moves goal = [x for x in 1:length(start)] # println("The manhattan distance of $start is $(manhattan(start))") g = 0 f = g + manhattan(start) pq = PriorityQueue() actions = [up,down,left,right] dd = Dict{Array{Int64,1},Int64}() snode = Node(C_NULL,f,start) enqueue!(pq,snode,f) pos_seen = 0 moves = 0 while (!isempty(pq)) current = dequeue!(pq) if haskey(dd,current.board) continue else push!(dd, current.board =>current.f) end if (current.board == goal) while(current.board != start) println(current.board) global moves +=1 current = current.parent[] end println(start) println("$start solved in $moves moves after looking at $pos_seen positions") break end global pos_seen+=1 global g+=1 for i in 1:4 nextmove = actions[i](current.board) if (nextmove === nothing || nextmove == current.board || haskey(dd,nextmove)) continue else global f = g+manhattan(nextmove) n = Node(Ref(current),f,nextmove) enqueue!(pq,n,f) end end end println("END")
Understanding issue in Scilab for my code
I am doing a projectile motion where i need to plot curves between position x and y for various angles but the scilab shows only one plot. I am confused. My code below function[H,R,T]=projectile(m,r,h,c,rho,theta,v0,x0,y0,t0) g=9.8 A=%pi*r^2 k=c*rho*A/2; i=1 t(i)=t0 x(i)=x0 y(i)=y0 for j=0:5 thetha=theta+j*15; vx(i)=v0*cos(thetha*%pi/180); vy(i)=v0*sin(thetha*%pi/180); while (y(i)>=0) v=sqrt(vx(i)^2+vy(i)^2); t(i+1)=t(i)+h; vx(i+1)=vx(i)-h*(k*v*vx(i)/m); vy(i+1)=vy(i)-h*(g+k*v*vy(i)/m); x(i+1)=x(i)+h*vx(i) y(i+1)=y(i)+h*vy(i) i=i+1; end plot(x(i),y(i),'.'); end n=i-1 R=x(n)-x(1); T=t(n); H=max(y) endfunction
You should use vectors to improve compacity and readability of your code. Here is my proposition of improved (and working) code: function [H,R,T] = projectile(m,r,h,c,rho,theta0,v0,x0,y0,t0) g = 9.81 A = %pi*r^2 k = c*rho*A/2; for theta = theta0 + (0:15:75) v = v0*[cos(theta*%pi/180); sin(theta*%pi/180)]; t = t0 xy = [x0;y0] i = 1 while xy(2,i) >= 0 t(i+1) = t(i)+h; v = v + h*([0;-g] - k*norm(v)*v/m); xy(:,i+1) = xy(:,i) + h*v; i = i+1; end plot(xy(1,:), xy(2,:)); end R = xy(1,$) - xy(1,1); T = t($); H = max(xy(2,:)) endfunction clf [H,R,T] = projectile(1,0.1,0.001,2,1000,5,1,0,0,0)
Trying to do a gaussian bell in Scilab
I'm trying to do a Gaussian bell using the data I am obtaining from a matrix but everytime I try to run the program I obtain this message: "Error: syntax error, unexpected identifier, expecting end" The data used to obtain the gaussina bell is a matrix which includes the last point of every n displacements, which are the last position of a particle. I want to know if there is an easier way to obtain the gaussian bell in scilab because I have to also do a fit with an histogram using the same data. function bla7() t=4000 n=1000 l=0.067 p=%pi*2 w1=zeros(t,1); w2=zeros(t,1); for I=1:t a=(grand(n,1,"unf",0,p)); x=l*cos(a) y=l*sin(a) z1=zeros(n,1); z2=zeros(n,1); for i=2:n z1(i)=z1(i-1)+x(i); z2(i)=z2(i-1)+y(i); end w1(I)=z1($) w2(I)=z2($) end n=10000 w10=zeros(t,1); w20=zeros(t,1); for I=1:t a=(grand(n,1,"unf",0,p)); x=l*cos(a) y=l*sin(a) z1=zeros(n,1); z2=zeros(n,1); for i=2:n z1(i)=z1(i-1)+x(i); z2(i)=z2(i-1)+y(i); end w10(I)=z1($) w20(I)=z2($) end n=100 w100=zeros(t,1); w200=zeros(t,1); for I=1:t a=(grand(n,1,"unf",0,p)); x=l*cos(a) y=l*sin(a) z1=zeros(n,1); z2=zeros(n,1); for i=2:n z1(i)=z1(i-1)+x(i); z2(i)=z2(i-1)+y(i); end w100(I)=z1($) w200(I)=z2($) end k=70 v=12/k c1=zeros(k,1) for r=1:t c=w1(r) m=-6+v n=-6 for g=1:k if (c<m & c>=n) then c1(g)=c1(g)+1 m=m+v n=n+v else m=m+v n=n+v end end end c2=zeros(k,1) c2(1)=-6+(6/k) for b=2:k c2(b)=c2(b-1)+v end y = stdev(w1) normal1=zeros(k,1) normal2=zeros(k,1) bb=-6 bc=-6+v for wa=1:k bd=(bb+bc)/2 gauss1=(1/(y*sqrt(2*%pi)))exp(-0.5(bb/y)^2) gauss2=(1/(y*sqrt(2*%pi)))exp(-0.5(bc/y)^2) gauss3=(1/(y*sqrt(2*%pi)))exp(-0.5(bd/y)^2) gauss4=((bc-bb)/6)*(gauss1+gauss2+4*gauss3) bb=bb+v bc=bc+v normal2(wa,1)=gauss4 end normal3=normal2*4000 k=100 v=24/k c10=zeros(k,1) for r=1:t c=w10(r) m=-12+v n=-12 for g=1:k if (c<m & c>=n) then c10(g)=c10(g)+1 m=m+v n=n+v else m=m+v n=n+v end end end c20=zeros(k,1) c20(1)=-12+(12/k) for b=2:k c20(b)=c20(b-1)+v end y = stdev(w10) normal10=zeros(k,1) normal20=zeros(k,1) bb=-12 bc=-12+v for wa=1:k bd=(bb+bc)/2 gauss10=(1/(y*sqrt(2*%pi)))exp(-0.5(bb/y)^2) gauss20=(1/(y*sqrt(2*%pi)))exp(-0.5(bc/y)^2) gauss30=(1/(y*sqrt(2*%pi)))exp(-0.5(bd/y)^2) gauss40=((bc-bb)/6)*(gauss10+gauss20+4*gauss30) bb=bb+v bc=bc+v normal20(wa,1)=gauss40 end normal30=normal20*4000 k=70 v=12/k c100=zeros(k,1) for r=1:t c=w100(r) m=-6+v n=-6 for g=1:k if (c<m & c>=n) then c100(g)=c100(g)+1 m=m+v n=n+v else m=m+v n=n+v end end end c200=zeros(k,1) c200(1)=-6+(6/k) for b=2:k c200(b)=c200(b-1)+v end y = stdev(w100) normal100=zeros(k,1) normal200=zeros(k,1) bb=-6 bc=-6+v for wa=1:k bd=(bb+bc)/2 gauss100=(1/(y*sqrt(2*%pi)))exp(-0.5(bb/y)^2) gauss200=(1/(y*sqrt(2*%pi)))exp(-0.5(bc/y)^2) gauss300=(1/(y*sqrt(2*%pi)))exp(-0.5(bd/y)^2) gauss400=((bc-bb)/6)*(gauss100+gauss200+4*gauss300) bb=bb+v bc=bc+v normal200(wa,1)=gauss400 end normal300=normal200*4000 bar(c20,c10,1.0,'white') plot(c20, normal30, 'b-') bar(c2,c1,1.0,'white') plot(c2, normal3, 'r-') bar(c200,c100,1.0,'white') plot(c200, normal300, 'm-') poly1.thickness=3; xlabel(["x / um"]); ylabel("molecules"); gcf().axes_size=[500,500] a=gca(); a.zoom_box=[-12,12;0,600]; a.font_size=4; a.labels_font_size=5; a.x_label.font_size = 5; a.y_label.font_size = 5; ticks = a.x_ticks ticks.labels =["-12";"-10";"-8";"-6";"-4";"-2";"0";"2";"4";"6";"8";"10";"12"] ticks.locations = [-12;-10;-8;-6;-4;-2;0;2;4;6;8;10;12] a.x_ticks = ticks endfunction
Each and every one of your gauss variables are missing the multiplication operator in two places. Check every line at it will run. For example, this: gauss1=(1/(y*sqrt(2*%pi)))exp(-0.5(bb/y)^2) should be this: gauss1=(1/(y*sqrt(2*%pi))) * exp(-0.5 * (bb/y)^2) As for the Gaussian bell, there is no standard function in Scilab. However, you could define a new function to make things more clear in your case: function x = myGauss(s,b_) x = (1/(s*sqrt(2*%pi)))*exp(-0.5*(b_/s)^2) endfunction Actually, while we're at it, your whole code is really difficult to read. You should define functions instead of repeating code: it helps clarify what you mean, and if there is a mistake, you need to fix only one place. Also, I personally do not recommend that you enclose everything in a function like bla7() because it makes things harder to debug. Your example could be rewritten like this: The myGauss function; A function w_ to calculate w1, w2, w10, w20, w100 and w200; A function c_ to calculate c1, c2, c10, c20, c100 and c200; A function normal_ to calculate normal1, normal2, normal10, normal20, normal100 and normal200; Call all four functions as many times as needed with different inputs for different results. If you do that, your could will look like this: function x = myGauss(s,b_) x = (1 / (s * sqrt(2 * %pi))) * exp(-0.5 * (b_/s)^2); endfunction function [w1_,w2_] = w_(t_,l_,n_,p_) w1_ = zeros(t_,1); w2_ = zeros(t_,1); for I = 1 : t_ a = (grand(n_,1,"unf",0,p_)); x = l_ * cos(a); y = l_ * sin(a); z1 = zeros(n_,1); z2 = zeros(n_,1); for i = 2 : n_ z1(i) = z1(i-1) + x(i); z2(i) = z2(i-1) + y(i); end w1_(I) = z1($); w2_(I) = z2($); end endfunction function [c1_,c2_] = c_(t_,k_,v_,w1_,x_) c1_ = zeros(k_,1) for r = 1 : t_ c = w1_(r); m = -x_ + v_; n = -x_; for g = 1 : k_ if (c < m & c >= n) then c1_(g) = c1_(g) + 1; m = m + v_; n = n + v_; else m = m + v_; n = n + v_; end end end c2_ = zeros(k_,1); c2_(1) = -x_ + (x_/k_); for b = 2 : k_ c2_(b) = c2_(b-1) + v_; end endfunction function [normal1_,normal2_,normal3_] = normal_(k_,bb_,bc_,v_,w1_) y = stdev(w1_); normal1_ = zeros(k_,1); normal2_ = zeros(k_,1); for wa = 1 : k_ bd_ = (bb_ + bc_) / 2; gauss1 = myGauss(y,bb_); gauss2 = myGauss(y,bc_); gauss3 = myGauss(y,bd_); gauss4 = ((bc_ - bb_) / 6) * (gauss1 + gauss2 + 4 * gauss3); bb_ = bb_ + v_; bc_ = bc_ + v_; normal2_(wa,1) = gauss4; end normal3_ = normal2_ * 4000; endfunction t = 4000; l = 0.067; p = 2 * %pi; n = 1000; k = 70; v = 12 / k; x = 6; bb = -x; bc = -x + v; [w1,w2] = w_(t,l,n,p); [c1,c2] = c_(t,k,v,w1,x); [normal1,normal2,normal3] = normal_(k,bb,bc,v,w1); bar(c2,c1,1.0,'white'); plot(c2, normal3, 'r-'); n = 10000; k = 100; v = 24 / k; x = 12; bb = -x; bc = -x + v; [w10,w20] = w_(t,l,n,p); [c10,c20] = c_(t,k,v,w10,x); [normal10,normal20,normal30] = normal_(k,bb,bc,v,w10); bar(c20,c10,1.0,'white'); plot(c20, normal30, 'b-'); n = 100; k = 70; v = 12 / k; x = 6; bb = -x; bc = -x + v; [w100,w200] = w_(t,l,n,p); [c100,c200] = c_(t,k,v,w100,x); [normal100,normal200,normal300] = normal_(k,bb,bc,v,w100); bar(c200,c100,1.0,'white'); plot(c200, normal300, 'm-'); poly1.thickness=3; xlabel(["x / um"]); ylabel("molecules"); gcf().axes_size=[500,500] a=gca(); a.zoom_box=[-12,12;0,600]; a.font_size=4; a.labels_font_size=5; a.x_label.font_size = 5; a.y_label.font_size = 5; ticks = a.x_ticks ticks.labels =["-12";"-10";"-8";"-6";"-4";"-2";"0";"2";"4";"6";"8";"10";"12"] ticks.locations = [-12;-10;-8;-6;-4;-2;0;2;4;6;8;10;12] a.x_ticks = ticks