I built a neural network with tensorflow, here the code :
class DQNetwork:
def __init__(self, state_size, action_size, learning_rate, name='DQNetwork'):
self.state_size = state_size
self.action_size = action_size
self.learning_rate = learning_rate
with tf.variable_scope(name):
# We create the placeholders
self.inputs_ = tf.placeholder(tf.float32, shape=[state_size[1], state_size[0]], name="inputs")
self.actions_ = tf.placeholder(tf.float32, [None, self.action_size], name="actions_")
# Remember that target_Q is the R(s,a) + ymax Qhat(s', a')
self.target_Q = tf.placeholder(tf.float32, [None], name="target")
self.fc = tf.layers.dense(inputs = self.inputs_,
units = 50,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
activation = tf.nn.elu)
self.output = tf.layers.dense(inputs = self.fc,
units = self.action_size,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
activation=None)
# Q is our predicted Q value.
self.Q = tf.reduce_sum(tf.multiply(self.output, self.actions_))
# The loss is the difference between our predicted Q_values and the Q_target
# Sum(Qtarget - Q)^2
self.loss = tf.reduce_mean(tf.square(self.target_Q - self.Q))
self.optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
But i have an issue with the output,
the output should normaly be at the same size than "action_size", and action_size value is 3
but i got an output like [[5][3]] instead of just [[3]] and i realy don't understand why...
This network got 2 dense layers, one with 50 perceptrons and the other with 3 perceptrons (= action_size).
state_size is format : [[9][5]]
If someone know why my output is two dimensions i will be very thankful
Your self.inputs_ placeholder has shape (5, 9). You perform the matmul(self.inputs_, fc1.w) operation in dense layer fc1 which has shape (9, 50) and it results in shape (5, 50). You then apply another dense layer with shape (50, 3) which results in output shape (5, 3).
The same schematically:
matmul(shape(5, 9), shape(9, 50)) ---> shape(5, 50) # output of 1st dense layer
matmul(shape(5, 50), shape(50, 3)) ---> shape(5, 3) # output of 2nd dense layer
Usually, the first dimension of the input placeholder represents batch size and the second dimension is the dimension of inputs feature vector. So for each sample in a batch you (batch size is 5 in your case) you get the output shape 3.
To get probabilities, use this:
import tensorflow as tf
import numpy as np
inputs_ = tf.placeholder(tf.float32, shape=(None, 9))
actions_ = tf.placeholder(tf.float32, shape=(None, 3))
fc = tf.layers.dense(inputs=inputs_, units=2)
output = tf.layers.dense(inputs=fc, units=3)
reduced = tf.reduce_mean(output, axis=0)
probs = tf.nn.softmax(reduced) # <--probabilities
inputs_vals = np.ones((5, 9))
actions_vals = np.ones((1, 3))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(probs.eval({inputs_:inputs_vals,
actions_:actions_vals}))
# [0.01858923 0.01566187 0.9657489 ]
Related
I have an array with a shape of [274 documents, 439 equal length sentences per document, 384-dimensional sbert embeddings per sentence]. I'm trying to fit a CNN model that predicts a binary value per document.
Below is the model architecture:
embedding_layer = Embedding(274, 384, input_length=439)
sequence_input = Input(shape=(439,))
embedded_sequences = embedding_layer(sequence_input)
# first conv filter
embedded_sequences = Reshape((439, 384, 1))(embedded_sequences)
x = Conv2D(100, (5, 384), activation='relu')(embedded_sequences)
x = MaxPooling2D((439 - 5 + 1, 1))(x)
# second conv filter
y = Conv2D(100, (4, 384), activation='relu')(embedded_sequences)
y = MaxPooling2D((439 - 4 + 1, 1))(y)
# third conv filter
z = Conv2D(100, (3, 384), activation='relu')(embedded_sequences)
z = MaxPooling2D((439 - 3 + 1, 1))(z)
# concatenate the convolutional layers
alpha = concatenate([x,y,z])
# flatten the concatenated values
alpha = Flatten()(alpha)
# add dropout
alpha = Dropout(0.5)(alpha)
# make predictions
preds = Dense(274, activation='softmax')(alpha)
# build model
model = Model(sequence_input, preds)
adadelta = optimizers.Adadelta()
model.compile(loss='categorical_crossentropy',
optimizer=adadelta,
metrics=['acc'])
model.fit(x=X_train_sent_emb_3m, y=y_train_sent_emb_3m, epochs=25 , validation_data=(X_test_sent_emb_3m, y_test_sent_emb_3m))
The model compiles but when I run the fit call I'm getting the following error message:
Epoch 1/25
WARNING:tensorflow:Model was constructed with shape (None, 439) for input KerasTensor(type_spec=TensorSpec(shape=(None, 439), dtype=tf.float32, name='input_15'), name='input_15', description="created by layer 'input_15'"), but it was called on an input with incompatible shape (None, 439, 384).
...
ValueError: total size of new array must be unchanged, input_shape = [439, 384, 384], output_shape = [439, 384, 1]
Any suggestions on what I need to change to make the model work for the shape of the data?
I have a pretrained model trying to remove a layer and perform prediction on the new model. However retrieving error.
model = applications.VGG16(include_top=False, input_shape=(224, 224, 3), weights='imagenet')
layers = [l for l in model.layers]
x = layers[9].output
x = layers[11](x)
x = layers[12](x)
x = layers[13](x)
x = layers[14](x)
x = layers[15](x)
x = layers[16](x)
x = layers[17](x)
x = layers[18](x)
result_model = Model(inputs=layers[0].input, outputs=x)
img='/content/elephant.jpg'
img = image.load_img(img, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
preds = result_model.predict(x)
print('Predicted:', decode_predictions(preds, top=3)[0])
Error
ValueError: `decode_predictions` expects a batch of predictions (i.e. a 2D array of shape (samples, 1000)). Found array with shape: (1, 14, 14, 512)
Your neural network doesn't have an output layer. decode_predictions can't decode the output of a convolutional layer, which is what you get when you do include_top=False. Do this:
model = applications.VGG16(include_top=True, input_shape=(224, 224, 3),
weights='imagenet')
Since I load my data (images) from the structured folders, I utilize the flow_from_directory function of the ImageDataGenerator class, which is provided by Keras. I've no issues while feeding this data to a CNN model. But when it comes to an LSTM model, getting the following error: ValueError: Error when checking input: expected lstm_1_input to have 3 dimensions, but got array with shape (64, 28, 28, 1). How can I reduce the dimension of the input data while reading it via ImageDataGenerator objects to be able to use an LSTM model instead of a CNN?
p.s. The shape of the input images is (28, 28) and they are grayscale.
train_valid_datagen = ImageDataGenerator(validation_split=0.2)
train_gen = train_valid_datagen.flow_from_directory(
directory=TRAIN_IMAGES_PATH,
target_size=(28, 28),
color_mode='grayscale',
batch_size=64,
class_mode='categorical',
shuffle=True,
subset='training'
)
Update: The LSTM model code:
inp = Input(shape=(28, 28, 1))
inp = Lambda(lambda x: squeeze(x, axis=-1))(inp) # from 4D to 3D
x = LSTM(num_units, dropout=dropout, recurrent_dropout=recurrent_dropout, activation=activation_fn, return_sequences=True)(inp)
x = BatchNormalization()(x)
x = Dense(128, activation=activation_fn)(x)
output = Dense(nb_classes, activation='softmax', kernel_regularizer=l2(0.001))(x)
model = Model(inputs=inp, outputs=output)
you start feeding your network with 4D data like your images in order to have the compatibility with ImageDataGenerator and then you have to reshape them in 3D format for LSTM.
These are the possibilities:
with only one channel you can simply squeeze the last dimension
inp = Input(shape=(28, 28, 1))
x = Lambda(lambda x: tf.squeeze(x, axis=-1))(inp) # from 4D to 3D
x = LSTM(32)(x)
if you have multiple channels (this is the case of RGB images or if would like to apply a RNN after a Conv2D) a solution can be this
inp = Input(shape=(28, 28, 1))
x = Conv2D(32, 3, padding='same', activation='relu')(inp)
x = Reshape((28,28*32))(x) # from 4D to 3D
x = LSTM(32)(x)
the fit can be computed as always with model.fit_generator
UPDATE: model review
inp = Input(shape=(28, 28, 1))
x = Lambda(lambda x: squeeze(x, axis=-1))(inp) # from 4D to 3D
x = LSTM(32, dropout=dropout, recurrent_dropout=recurrent_dropout, activation=activation_fn, return_sequences=False)(x)
x = BatchNormalization()(x)
x = Dense(128, activation=activation_fn)(x)
output = Dense(nb_classes, activation='softmax', kernel_regularizer=l2(0.001))(x)
model = Model(inputs=inp, outputs=output)
model.summary()
pay attention when you define inp variable (don't overwrite it)
set return_seq = False in LSTM in order to have 2D output
I am trying to convert a Keras functional model into class derived from tensorflow.keras.models.Model and I'm facing 2 issues.
1. I need to multiply 2 layers using tensorflow.keras.layers.multiply, but it returns a ValueError: A merge layer should be called on a list of inputs.
2. If I remove this layern thus working with a classical CNN, it returns a tensorflow.python.eager.core._SymbolicException:Inputs to eager execution function cannot be Keras symbolic tensors, but found [<tf.Tensor 'patch:0' shape=(None, 64, 64, 3) dtype=float32>].
I would appreciate some guidance to convert my code. I'm using Python 3.7, TensorFlow 2.0rc2 and Keras 2.3.0. The class I have defined is the following:
class TestCNN(Model):
"""
conv1 > conv2 > fc1 > fc2 > alpha * fc2 > Sigmoid > output
"""
def __init__(self, input_dimension, n_category,**kwargs):
"""
Instanciator
:param input_dimension: tuple of int, theoretically (patch_size x patch_size x channels)
:param n_category: int, the number of categories to classify,
:param weight_decay: float, weight decay parameter for all the kernel regularizers
:return: the Keras model
"""
super(TestCNN, self).__init__(name='testcnn', **kwargs)
self.input_dimension = input_dimension
self.n_category = n_category
self.conv1 = Conv2D(36, activation='relu', name='conv1/relu')
self.conv1_maxpooling = MaxPooling2D((2, 2), name='conv1/maxpooling')
self.conv2 = Conv2D(48, activation='relu', name='conv2/relu')
self.conv2_maxpooling = MaxPooling2D((2, 2), name='conv2/maxpooling')
self.flatten1 = Flatten(name='flatten1')
self.fc1 = Dense(512, activation='relu', name='fc1/relu')
self.fc2 = Dense(512, activation='relu', name='fc2/relu')
self.alpha = TestLayer(layer_dim=128, name='alpha')
self.output1 = TestSigmoid(output_dimension=n_category, name='output_layer')
#tensorflow.function
def call(self, x):
x = self.conv1(x)
x = self.conv1_maxpooling(x)
x = self.conv2(x)
x = self.conv2_maxpooling(x)
x = self.flatten1(x)
x = self.fc1(x)
x = self.fc2(x)
alpha_times_fc2 = multiply([alpha_output, fc2_output], name='alpha_times_fc2')
return self.output1(alpha_times_fc2)
def build(self, **kwargs):
inputs = Input(shape=self.input_dimension, dtype='float32', name='patch')
outputs = self.call(inputs)
super(TestCNN, self).__init__(name="TestCNN", inputs=inputs, outputs=outputs, **kwargs)
Then, in my main loop, I'm creating the instance as following:
testcnn = TestCNN(input_dimension=input_dimension, n_category=training_set.category_count)
optimizer = tensorflow.keras.optimizers.Adam(
lr=parameter['training']['adam']['learning_rate'],
beta_1=parameter['training']['adam']['beta1'],
beta_2=parameter['training']['adam']['beta2'])
metrics_list = [tensorflow.keras.metrics.TruePositives]
loss_function = tensorflow.keras.losses.categorical_crossentropy
loss_metrics = tensorflow.keras.metrics.Mean()
testcnn.build()
testcnn.summary()
This code is raising the tensorflow.python.eager.core._SymbolicException. If I comment out some lines and return directly the results of the fc2 layer, I've got the ValueError.
I have commenter the build() function in my model and call it in my main script as following:
testcnn.build(input_dimension)
testcnn.compile(optimizer=adam_optimizer, loss=loss_function, metrics=metrics_list)
testcnn.summary()
Input dimension is a list formatted as following:
input_dimension = (batch_size, image_size, image_size, channels)
I was trying to implement various GANs in Tensorflow (after doing it successfully in PyTorch), and I am having some problems while coding the discriminator part.
The code of the discriminator (very similar to the MNIST CNN tutorial) is:
def discriminator(x):
"""Compute discriminator score for a batch of input images.
Inputs:
- x: TensorFlow Tensor of flattened input images, shape [batch_size, 784]
Returns:
TensorFlow Tensor with shape [batch_size, 1], containing the score
for an image being real for each input image.
"""
with tf.variable_scope("discriminator"):
x = tf.reshape(x, [tf.shape(x)[0], 28, 28, 1])
h_1 = leaky_relu(tf.layers.conv2d(x, 32, 5))
m_1 = tf.layers.max_pooling2d(h_1, 2, 2)
h_2 = leaky_relu(tf.layers.conv2d(m_1, 64, 5))
m_2 = tf.layers.max_pooling2d(h_2, 2, 2)
m_2 = tf.contrib.layers.flatten(m_2)
h_3 = leaky_relu(tf.layers.dense(m_2, 4*4*64))
logits = tf.layers.dense(h_3, 1)
return logits
while the code for the generator (architecture of InfoGAN paper) is:
def generator(z):
"""Generate images from a random noise vector.
Inputs:
- z: TensorFlow Tensor of random noise with shape [batch_size, noise_dim]
Returns:
TensorFlow Tensor of generated images, with shape [batch_size, 784].
"""
with tf.variable_scope("generator"):
batch_size = tf.shape(z)[0]
fc = tf.nn.relu(tf.layers.dense(z, 1024))
bn_1 = tf.layers.batch_normalization(fc)
fc_2 = tf.nn.relu(tf.layers.dense(bn_1, 7*7*128))
bn_2 = tf.layers.batch_normalization(fc_2)
bn_2 = tf.reshape(bn_2, [batch_size, 7, 7, 128])
c_1 = tf.nn.relu(tf.contrib.layers.convolution2d_transpose(bn_2, 64, 4, 2, padding='valid'))
bn_3 = tf.layers.batch_normalization(c_1)
c_2 = tf.tanh(tf.contrib.layers.convolution2d_transpose(bn_3, 1, 4, 2, padding='valid'))
So far, so good. The number of parameters is correct (checked it). However, I am having some problems in the next block of code:
tf.reset_default_graph()
# number of images for each batch
batch_size = 128
# our noise dimension
noise_dim = 96
# placeholder for images from the training dataset
x = tf.placeholder(tf.float32, [None, 784])
# random noise fed into our generator
z = sample_noise(batch_size, noise_dim)
# generated images
G_sample = generator(z)
with tf.variable_scope("") as scope:
#scale images to be -1 to 1
logits_real = discriminator(preprocess_img(x))
# Re-use discriminator weights on new inputs
scope.reuse_variables()
logits_fake = discriminator(G_sample)
# Get the list of variables for the discriminator and generator
D_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'discriminator')
G_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'generator')
# get our solver
D_solver, G_solver = get_solvers()
# get our loss
D_loss, G_loss = gan_loss(logits_real, logits_fake)
# setup training steps
D_train_step = D_solver.minimize(D_loss, var_list=D_vars)
G_train_step = G_solver.minimize(G_loss, var_list=G_vars)
D_extra_step = tf.get_collection(tf.GraphKeys.UPDATE_OPS, 'discriminator')
G_extra_step = tf.get_collection(tf.GraphKeys.UPDATE_OPS, 'generator')
The problem I am getting is where I am doing the reshape in the discriminator, and the error says:
ValueError: None values not supported.
Sure, the value for the batch_size is None (btw, the same error I am getting even where I am changing it to some number), but shape function (as far as I understand) should get the dynamic shape, not the static one. I think that I am a bit lost here.
For what is worth, I am giving here the link to the entire notebook I am working: https://github.com/TheRevanchist/GANs/blob/master/GANs-TensorFlow.ipynb if someone wants to look at it.
NB: The code here is part of the Stanford CS231n assignment. I have no affiliation with Stanford though, so it isn't homework cheating (proof: the course is finished months ago).
The generator seems to be the problem. The output size should match the discriminator. And the other issues are batch norm should be applied before the activation unit. I have modified the code:
with tf.variable_scope("generator"):
fc = tf.layers.dense(z, 4*4*128)
bn_1 = leaky_relu(tf.layers.batch_normalization(fc))
bn_1 = tf.reshape(bn_1, [-1, 4, 4, 128])
c_1 = tf.layers.conv2d_transpose(bn_1, 64, 5, strides=2, padding='same')
bn_2 = leaky_relu(tf.layers.batch_normalization(c_1))
c_2 = tf.layers.conv2d_transpose(bn_2, 32, 5, strides=2, padding='same')
bn_3 = leaky_relu(tf.layers.batch_normalization(c_2))
c_3 = tf.layers.conv2d_transpose(bn_3, 1, 5, strides=2, padding='same')
c_3 = tf.layers.batch_normalization(c_3)
c_3 = tf.image.resize_images(c_3, (28, 28))
c_3 = tf.contrib.layers.flatten(c_3)
c_3 = tf.tanh(c_3)
return c_3
Your code gives the below output when run with the above changes
Instead of passing None to reshape you must pass -1.
So this:
x = tf.reshape(x, [tf.shape(x)[0], 28, 28, 1])
becomes
x = tf.reshape(x, [-1, 28, 28, 1])
and this:
bn_2 = tf.reshape(bn_2, [batch_size, 7, 7, 128])
becomes:
bn_2 = tf.reshape(bn_2, [-1, 7, 7, 128])
It will infer the batch size from the rest of the shape you provided.