Is encapsulation just a capsula creation? - oop

Recently I was talking to a very experienced programmer (8+ years of experience) and he told me that "combining data with functions that work with them in a capsula" is a wrong term for encapsulation. He told me that that was what encapsulation allowed me to do, but not what encapsulation itself was. He told me that as soon as inheritance is not possible without encapsulation, encapsulation must be just a capsula creation (class or anything like that). But today I got interviewed by a less experienced programmer and he was so sure all those classic definitions on wikipedia were right he told me not to even think of passing the interview. So I tried to google all that stuff about encapsulation, and about inheritence not being possible without encapsulation, but didn't find anything. But I can't believe that experienced programmer was wrong, he convienced not only me, but other experienced programmers too. Maybe that correct definition is just something that is lost in the chunks of useless and unimportant info?
So please, give me answers on these two questions:
1) can inheritence be possible without encapsulation? (A class's Inheritence from a class)
2) If not, then can we consider declaring a class encapsulation? Because only after declaring a class we can inherit.

Well, I'm Sorry, but I fail to see the connection between encapsulation and inheritance.
Encapsulation is hiding your internal implementation behind a publicly visible API.
Basically, it's a separation between a type's actual implementation and what it exposes.
In a broad sense, one can look at even the human body and see encapsulation:
For example: You are breathing air in and out, that's your public API, but the internals of what your body is doing with this air are hidden away inside your respiratory system - your lunges passes oxygen to your blood and collects from it carbon dioxide in return - thus changing the mixture ratio of the gasses in the air you breath, but none of this is visible to the outside world.
Inheritance, in the OOP world, is the ability to take a specific object, and derive an even more specific object from it, while adding capabilities (and sometimes mutating existing capabilities via overriding).
For example: A Dog is a kind of Mammal which is a kind of Animal.
An Animal might contain methods such as Eat() and properties such as Weight and Age.
A Mammal might override the Eat() method to implement suckling (from it's mother's breast) as an infant, but depending on it's age eating solid foods.
A Dog might introduce another capability such as Bark.
All of this have nothing to do with encapsulation as desribed in the previous paragraph.
Inheritance is tightly related to another core principle of object oriented programming called Polymorphism - basically, the ability to reference a derived class using it's base class type - perhaps you (or the interviewer) are confusing the two?
However, today is the first time I've seen another definition of encapsulation (and I've been working with oop languages for about two decades now):
A language construct that facilitates the bundling of data with the methods (or other functions) operating on that data.
Under that
definition, encapsulation is the process of creating capsules - stand-alone code snippets that holds data and ways to interact with it - a.k.a types, classes, etc', and is somewhat related to inheritance - in order to inherit a type, that type first needs to be defined.
However, the way I see it, this definition is not enough to define encapsulation. It can be a part of the definition, but not a stand-alone definition of encapsulation.

Related

Could override be deprecated?

There is a Design Principle that says Favor composition over inheritance and its advertised benefit is that it simplifies design. Let's agree on that as background for this question.
So, could override be deprecated? Could we, in theory, get rid of it for good?
Let's be a bit over zealous on the above mentioned Design Principle and take it to the extreme: composition all the way. One reason should be enough for now, override abuse.
One question arises: are we, programmers, going to loose something? Is any power lost trying to prevent some possible abuse?
So, what applications are there for override and can they be achieved otherwise? Should they?
Not only is this a completely radical and impractical proposal, it's not a particularly compelling one. Just because a feature gets abused doesn't mean that it should be removed entirely. People have been abusing all sorts of things for a very long time, but that hardly implies that they don't serve a useful purpose when used correctly.
Design patterns are one thing; designing an intentionally limited language to conform with your ideal notion of a good design pattern is quite another. To my mind, it's an exercise in futility. Programmers will still find something to abuse.
And I take issue with the central assumption that any use of override is inappropriate or abusive. There are lots of cases where you want to take advantage of inheritance implying an is-a relationship. Sure, this model doesn't fit the real world 100% of the time, but there are plenty of times that it does.
The Animal and Shape class examples that you read about in textbooks might be a bit contrived, but I frequently use inheritance in real-world applications.
That's not to imply that I disagree with the sentiment that one should generally or when in doubt, favor composition over inheritance. But that's not saying that inheritance is bad and should never be used.
If you remove inheritance altogether you remove a significant feature of OOP design.
Using inheritance allows you to use a "is a" design, which has a strong meaning in OOP design, and of course saves code redundancy.
If you'd use only encapsulation you'd have to either expose the members (which isn't always what you want (raises design complexity because of the amount of stuff the programmer needs to know about).
Or, make wrapper methods that will call the member's methods (which is redundant).
Besides that, lets assume you know the difference between overriding and hiding, you can see that most OOP languages will choose to use strictly overriding when given the choice.
This is because overriding is usually more intuitive than hiding.
So, if you remove overriding, and still allow inheritance, you are left with hiding. That usually leads to many runtime errors and un-expected results with type conflicts.
Farther more you won't be able to have things like an array or list of base class pointers that point a lot of different derived classes. Because if you don't have overrides it won't be able to call the specified derived class method, it will only call the same base class method for all of them.
I've added a response on behalf of astander extracting from his link (hope you don't mind)
For example, one advantage with inheritance is that it is easier to
use than composition. However, that ease of use comes at the cost that
it is harder to reuse because the subclass is tied to the parent
class.
One advantage of composition is that it is more flexible because
behavior can be swapped at runtime. One disadvantage of composition is
that the behavior of the system may be harder to understand just by
looking at the source. These are all factors one should think about
when applying composition over inheritance.
I'm always using polymorphism. I always seem to have a bunch of objects with some common concept behind them and a lot of code that is interested in that concept--that is, they care about Animals, not Lions and Tigers and Bears or even Carnivores. Interfaces often work better for this than superclasses, so I suppose I could get by without subclassing. (Are interfaces okay when subclassing is not?) However, I have often found that a lot of classes using an interface have identical code for the interface methods. Changing the interface to a superclass can let me get rid of a lot of duplicate code. The other situation I find myself in is where a large, complex class does what I need except for one teeny, tiny little thing. With subclassing, I can create a new class that does exactly what I need in just a few lines.
There may be a language component to this debate. When I'm writing in Java I subclass at a furious rate. When I'm writing in C# I think long and hard before overriding anything or even using interfaces. I'm not sure why and it may have more to do with the type of work I do in those languages than the languages themselves. But working in C#, I am quite sympathetic to this idea, while when working in Java...well, I'd have to toss almost all my Java code if I couldn't override.

Should I be using inheritance?

This is more of a subjective question, so I'm going to preemptively mark it as community wiki.
Basically, I've found that in most of my code, there are many classes, many of which use each other, but few of which are directly related to each other. I look back at my college days, and think of the traditional class Cat : Animal type examples, where you have huge inheritance trees, but I see none of this in my code. My class diagrams look like giant spiderwebs, not like nice pretty trees.
I feel I've done a good job of separating information logically, and recently I've done a good job of isolating dependencies between classes via DI/IoC techniques, but I'm worried I might be missing something. I do tend to clump behavior in interfaces, but I simply don't subclass.
I can easily understand subclassing in terms of the traditional examples such as class Dog : Animal or class Employee : Person, but I simply don't have anything that obvious I'm dealing with. And things are rarely as clear-cut as class Label : Control. But when it comes to actually modeling real entities in my code as a hierarchy, I have no clue where to begin.
So, I guess my questions boil down to this:
Is it ok to simply not subclass or inherit? Should I be concerned at all?
What are some strategies you have to determine objects that could benefit from inheritance?
Is it acceptable to always inherit based on behavior (interfaces) rather than the actual type?
Inheritance should always represent an "is-a" relationship. You should be able to say "A is a B" if A derives from B. If not, prefer composition. It's perfectly fine to not subclass when it is not necessary.
For example, saying that FileOpenDialog "is-a" Window makes sense, but saying that an Engine "is-a" Car is nonsense. In that case, an instance of Engine inside a Car instance is more appropriate (It can be said that Car "is-implemented-in-terms-of" Engine).
For a good discussion of inheritance, see Part 1 and Part 2 of "Uses and Abuses of Inheritance" on gotw.ca.
As long as you do not miss the clear cut 'is a' relationships, it's ok and in fact, it's best not to inherit, but to use composition.
is-a is the litmus test. if (Is X a Y?) then class X : Y { } else class X { Y myY; } or class Y { X myX; }
Using interfaces, that is, inheriting behavior, is a very neat way to structure the code via adding only the needed behavior and no other. The tricky part is defining those interfaces well.
No technology or pattern should be used for its own sake. You obviously work in a domain where classes tend to not benefit from inheritance, so you shouldn't use inheritance.
You've used DI to keep things neat and clean. You separated the concerns of your classes. Those are all good things. Don't try and force inheritance if you don't really need it.
An interesting follow-up to this question would be: Which programming domains do tend to make good use of inheritance? (UI and db frameworks have already been mentioned and are great examples. Any others?)
I also hate the Dog -> Mammal -> Animal examples, precisely because they do not occur in real life.
I use very little subclassing, because it tightly couples the subclass to the superclass and makes your code really hard to read. Sometimes implementation inheritance is useful (e.g. PostgreSQLDatabaseImpl and MySQLDatabaseImpl extend AbstractSQLDatabase), but most of the time it just makes a mess of things. Most of the time I see subclasses the concept has been misused and either interfaces or a property should be used.
Interfaces, however, are great and you should use those.
Generally, favour composition over inheritance. Inheritance tends to break encapsulation. e.g. If a class depends on a method of a super class and the super class changes the implementation of that method in some release, the subclass may break.
At times when you are designing a framework, you will have to design classes to be inherited. If you want to use inheritance, you will have to document and design for it carefully. e.g. Not calling any instance methods (that could be overridden by your subclasses) in the constructor. Also if its a genuine 'is-a' relationship, inheritance is useful but is more robust if used within a package.
See Effective Java (Item 14, and 15). It gives a great argument for why you should favour composition over inheritance. It talks about inheritance and encapsulation in general (with java examples). So its a good resource even if you are not using java.
So to answer your 3 questions:
Is it ok to simply not subclass or inherit? Should I be concerned at all?
Ans: Ask yourself the question is it a truly "is-a" relationship? Is decoration possible? Go for decoration
// A collection decorator that is-a collection with
public class MyCustomCollection implements java.util.Collection {
private Collection delegate;
// decorate methods with custom code
}
What are some strategies you have to determine objects that could benefit from inheritance?
Ans: Usually when you are writing a framework, you may want to provide certain interfaces and "base" classes specifically designed for inheritance.
Is it acceptable to always inherit based on behavior (interfaces) rather than the actual type?
Ans: Mostly yes, but you'd be better off if the super class is designed for inheritance and/or under your control. Or else go for composition.
IMHO, you should never do #3, unless you're building an abstract base class specifically for that purpose, and its name makes it clear what its purpose is:
class DataProviderBase {...}
class SqlDataProvider : DataProviderBase {...}
class DB2DataProvider : DataProviderBase {...}
class AccountDataProvider : SqlDataProvider {...}
class OrderDataProvider : SqlDataProvider {...}
class ShippingDataProvider : DB2DataProvider {...}
etc.
Also following this type of model, sometimes if you provide an interface (IDataProvider) it's good to also provide a base class (DataProviderBase) that future consumers can use to conveniently access logic that's common to all/most DataProviders in your application model.
As a general rule, though, I only use inheritance if I have a true "is-a" relationship, or if it will improve the overall design for me to create an "is-a" relationship (provider model, for instance.)
Where you have shared functionality, programming to the interface is more important than inheritance.
Essentially, inheritance is more about relating objects together.
Most of the time we are concerned with what an object can DO, as opposed to what it is.
class Product
class Article
class NewsItem
Are the NewsItem and Article both Content items? Perhaps, and you may find it useful to be able to have a list of content which contains both Article items and NewsItem items.
However, it's probably more likely you'll have them implement similar interfaces. For example, IRssFeedable could be an interface that they both implement. In fact, Product could also implement this interface.
Then they can all be thrown to an RSS Feed easily to provide lists of things on your web page. This is a great example when the interface is important whereas the inheritance model is perhaps less useful.
Inheritance is all about identifying the nature of Objects
Interfaces are all about identifying what Objects can DO.
My class hierarchies tend to be fairly flat as well, with interfaces and composition providing the necessary coupling. Inheritance seems to pop up mostly when I'm storing collections of things, where the different kinds of things will have data/properties in common. Inheritance often feels more natural to me when there is common data, whereas interfaces are a very natural way to express common behavior.
The answer to each of your 3 questions is "it depends". Ultimately it will all depend on your domain and what your program does with it. A lot of times, I find the design patterns I choose to use actually help with finding points where inheritance works well.
For example, consider a 'transformer' used to massage data into a desired form. If you get 3 data sources as CSV files, and want to put them into three different object models (and maybe persist them into a database), you could create a 'csv transformer' base and then override some methods when you inherit from it in order to handle the different specific objects.
'Casting' the development process into the pattern language will help you find objects/methods that behave similarly and help in reducing redundant code (maybe through inheritance, maybe through the use of shared libraries - whichever suits the situation best).
Also, if you keep your layers separate (business, data, presentation, etc.), your class diagram will be simpler, and you could then 'visualize' those objects that aught to be inherited.
I wouldn't get too worried about how your class diagram looks, things are rarely like the classroom...
Rather ask yourself two questions:
Does your code work?
Is it extremely time consuming to maintain? Does a change sometimes require changing the 'same' code in many places?
If the answer to (2) is yes, you might want to look at how you have structured your code to see if there is a more sensible fashion, but always bearing in mind that at the end of the day, you need to be able to answer yes to question (1)... Pretty code that doesn't work is of no use to anybody, and hard to explain to the management.
IMHO, the primary reason to use inheritance is to allow code which was written to operate upon a base-class object to operate upon a derived-class object instead.

Design classes - OOPS features

I am interested in improving my designing capability (designing of classes with its properties, methods etc) for a given.
i.e. How to decide what should be the classes, methods and properties?
Can you guys suggest me good material for improving on this?
Please see:
Any source of good object-oriented design practises?
Best Resources to learn OO Design and Analysis
among many....
Encapsulation: The wrapping up of data and functions into a single unit is known as encapsulation. Or, simply put: putting the data and methods together in a single unit may be a class.
Inheritance: Aquiring the properties from parent class to child class. Or: getting the properties from super class to sub class is known as inheritance.
Polymorphism: The ability to take more that one form, it supports method overloading and method overriding.
Method overloading: When a method in a class having the same method name with different arguments (diff parameters or signatures) is said to be method overloading. This is compile-time polymorphism – using one identifier to refer to multiple items in the same scope.
This is perhaps a question which every programmer thinks of one day.
The designing capability comes with your experience gradually. What I would say is in general scenario if you can visualize the Database objects for a given problem, the rest is a cakewalk (isnt true sometimes if you work on a techie project with no DB)
You can start thinking of objects which are interacting in the real world to complete the process and then map them to classes with appropriate properties and then methods for defining their behavior. Ten you can focus on the classes which contribute to running the workflow and not to any individual real world object.
This gets a lot simplified if we focus on designing the DB before we jump directly to code design.
A lot depends on the pattern you choose - If you see a problem from MVC perspective, you will naturally be drawn towards identifying "controller" classe first and so on.
I guess I need not repeat the golden sources of design and OOPS wisdom - they already posted here or there.
I would recommend you to read up on some UML and design patterns. That gets you going with the thinking in "drawing" terms. You can also get a good grasp of a big class/object a lot easier.
One particular book that is good in this area.
Applying UML and Patterns
Give a look a Domain-Driven Design, which defines entities, value objects, factories, services and repositories and the GRASP patterns (General Responsibility Assignment Software Patterns) e.g. Expert, Creator, Controller.
Have a look at the part 1 screencast the first part is not silverlight but just a command line calculator that starts out as a single bit of code, and is then broken down into classes.

Inheritance vs. Aggregation [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
There are two schools of thought on how to best extend, enhance, and reuse code in an object-oriented system:
Inheritance: extend the functionality of a class by creating a subclass. Override superclass members in the subclasses to provide new functionality. Make methods abstract/virtual to force subclasses to "fill-in-the-blanks" when the superclass wants a particular interface but is agnostic about its implementation.
Aggregation: create new functionality by taking other classes and combining them into a new class. Attach an common interface to this new class for interoperability with other code.
What are the benefits, costs, and consequences of each? Are there other alternatives?
I see this debate come up on a regular basis, but I don't think it's been asked on
Stack Overflow yet (though there is some related discussion). There's also a surprising lack of good Google results for it.
It's not a matter of which is the best, but of when to use what.
In the 'normal' cases a simple question is enough to find out if we need inheritance or aggregation.
If The new class is more or less as the original class. Use inheritance. The new class is now a subclass of the original class.
If the new class must have the original class. Use aggregation. The new class has now the original class as a member.
However, there is a big gray area. So we need several other tricks.
If we have used inheritance (or we plan to use it) but we only use part of the interface, or we are forced to override a lot of functionality to keep the correlation logical. Then we have a big nasty smell that indicates that we had to use aggregation.
If we have used aggregation (or we plan to use it) but we find out we need to copy almost all of the functionality. Then we have a smell that points in the direction of inheritance.
To cut it short. We should use aggregation if part of the interface is not used or has to be changed to avoid an illogical situation. We only need to use inheritance, if we need almost all of the functionality without major changes. And when in doubt, use Aggregation.
An other possibility for, the case that we have an class that needs part of the functionality of the original class, is to split the original class in a root class and a sub class. And let the new class inherit from the root class. But you should take care with this, not to create an illogical separation.
Lets add an example. We have a class 'Dog' with methods: 'Eat', 'Walk', 'Bark', 'Play'.
class Dog
Eat;
Walk;
Bark;
Play;
end;
We now need a class 'Cat', that needs 'Eat', 'Walk', 'Purr', and 'Play'. So first try to extend it from a Dog.
class Cat is Dog
Purr;
end;
Looks, alright, but wait. This cat can Bark (Cat lovers will kill me for that). And a barking cat violates the principles of the universe. So we need to override the Bark method so that it does nothing.
class Cat is Dog
Purr;
Bark = null;
end;
Ok, this works, but it smells bad. So lets try an aggregation:
class Cat
has Dog;
Eat = Dog.Eat;
Walk = Dog.Walk;
Play = Dog.Play;
Purr;
end;
Ok, this is nice. This cat does not bark anymore, not even silent. But still it has an internal dog that wants out. So lets try solution number three:
class Pet
Eat;
Walk;
Play;
end;
class Dog is Pet
Bark;
end;
class Cat is Pet
Purr;
end;
This is much cleaner. No internal dogs. And cats and dogs are at the same level. We can even introduce other pets to extend the model. Unless it is a fish, or something that does not walk. In that case we again need to refactor. But that is something for an other time.
At the beginning of GOF they state
Favor object composition over class inheritance.
This is further discussed here
The difference is typically expressed as the difference between "is a" and "has a". Inheritance, the "is a" relationship, is summed up nicely in the Liskov Substitution Principle. Aggregation, the "has a" relationship, is just that - it shows that the aggregating object has one of the aggregated objects.
Further distinctions exist as well - private inheritance in C++ indicates a "is implemented in terms of" relationship, which can also be modeled by the aggregation of (non-exposed) member objects as well.
Here's my most common argument:
In any object-oriented system, there are two parts to any class:
Its interface: the "public face" of the object. This is the set of capabilities it announces to the rest of the world. In a lot of languages, the set is well defined into a "class". Usually these are the method signatures of the object, though it varies a bit by language.
Its implementation: the "behind the scenes" work that the object does to satisfy its interface and provide functionality. This is typically the code and member data of the object.
One of the fundamental principles of OOP is that the implementation is encapsulated (ie:hidden) within the class; the only thing that outsiders should see is the interface.
When a subclass inherits from a subclass, it typically inherits both the implementation and the interface. This, in turn, means that you're forced to accept both as constraints on your class.
With aggregation, you get to choose either implementation or interface, or both -- but you're not forced into either. The functionality of an object is left up to the object itself. It can defer to other objects as it likes, but it's ultimately responsible for itself. In my experience, this leads to a more flexible system: one that's easier to modify.
So, whenever I'm developing object-oriented software, I almost always prefer aggregation over inheritance.
I gave an answer to "Is a" vs "Has a" : which one is better?.
Basically I agree with other folks: use inheritance only if your derived class truly is the type you're extending, not merely because it contains the same data. Remember that inheritance means the subclass gains the methods as well as the data.
Does it make sense for your derived class to have all the methods of the superclass? Or do you just quietly promise yourself that those methods should be ignored in the derived class? Or do you find yourself overriding methods from the superclass, making them no-ops so no one calls them inadvertently? Or giving hints to your API doc generation tool to omit the method from the doc?
Those are strong clues that aggregation is the better choice in that case.
I see a lot of "is-a vs. has-a; they're conceptually different" responses on this and the related questions.
The one thing I've found in my experience is that trying to determine whether a relationship is "is-a" or "has-a" is bound to fail. Even if you can correctly make that determination for the objects now, changing requirements mean that you'll probably be wrong at some point in the future.
Another thing I've found is that it's very hard to convert from inheritance to aggregation once there's a lot of code written around an inheritance hierarchy. Just switching from a superclass to an interface means changing nearly every subclass in the system.
And, as I mentioned elsewhere in this post, aggregation tends to be less flexible than inheritance.
So, you have a perfect storm of arguments against inheritance whenever you have to choose one or the other:
Your choice will likely be the wrong one at some point
Changing that choice is difficult once you've made it.
Inheritance tends to be a worse choice as it's more constraining.
Thus, I tend to choose aggregation -- even when there appears to be a strong is-a relationship.
The question is normally phrased as Composition vs. Inheritance, and it has been asked here before.
I wanted to make this a comment on the original question, but 300 characters bites [;<).
I think we need to be careful. First, there are more flavors than the two rather specific examples made in the question.
Also, I suggest that it is valuable not to confuse the objective with the instrument. One wants to make sure that the chosen technique or methodology supports achievement of the primary objective, but I don't thing out-of-context which-technique-is-best discussion is very useful. It does help to know the pitfalls of the different approaches along with their clear sweet spots.
For example, what are you out to accomplish, what do you have available to start with, and what are the constraints?
Are you creating a component framework, even a special purpose one? Are interfaces separable from implementations in the programming system or is it accomplished by a practice using a different sort of technology? Can you separate the inheritance structure of interfaces (if any) from the inheritance structure of classes that implement them? Is it important to hide the class structure of an implementation from the code that relies on the interfaces the implementation delivers? Are there multiple implementations to be usable at the same time or is the variation more over-time as a consequence of maintenance and enhancememt? This and more needs to be considered before you fixate on a tool or a methodology.
Finally, is it that important to lock distinctions in the abstraction and how you think of it (as in is-a versus has-a) to different features of the OO technology? Perhaps so, if it keeps the conceptual structure consistent and manageable for you and others. But it is wise not to be enslaved by that and the contortions you might end up making. Maybe it is best to stand back a level and not be so rigid (but leave good narration so others can tell what's up). [I look for what makes a particular portion of a program explainable, but some times I go for elegance when there is a bigger win. Not always the best idea.]
I'm an interface purist, and I am drawn to the kinds of problems and approaches where interface purism is appropriate, whether building a Java framework or organizing some COM implementations. That doesn't make it appropriate for everything, not even close to everything, even though I swear by it. (I have a couple of projects that appear to provide serious counter-examples against interface purism, so it will be interesting to see how I manage to cope.)
I'll cover the where-these-might-apply part. Here's an example of both, in a game scenario. Suppose, there's a game which has different types of soldiers. Each soldier can have a knapsack which can hold different things.
Inheritance here?
There's a marine, green beret & a sniper. These are types of soldiers. So, there's a base class Soldier with Marine, Green Beret & Sniper as derived classes
Aggregation here?
The knapsack can contain grenades, guns (different types), knife, medikit, etc. A soldier can be equipped with any of these at any given point in time, plus he can also have a bulletproof vest which acts as armor when attacked and his injury decreases to a certain percentage. The soldier class contains an object of bulletproof vest class and the knapsack class which contains references to these items.
I think it's not an either/or debate. It's just that:
is-a (inheritance) relationships occur less often than has-a (composition) relationships.
Inheritance is harder to get right, even when it's appropriate to use it, so due diligence has to be taken because it can break encapsulation, encourage tight coupling by exposing implementation and so forth.
Both have their place, but inheritance is riskier.
Although of course it wouldn't make sense to have a class Shape 'having-a' Point and a Square classes. Here inheritance is due.
People tend to think about inheritance first when trying to design something extensible, that is what's wrong.
Favour happens when both candidate qualifies. A and B are options and you favour A. The reason is that composition offers more extension/flexiblity possiblities than generalization. This extension/flexiblity refers mostly to runtime/dynamic flexibility.
The benefit is not immediately visible. To see the benefit you need to wait for the next unexpected change request. So in most cases those sticked to generlalization fails when compared to those who embraced composition(except one obvious case mentioned later). Hence the rule. From a learning point of view if you can implement a dependency injection successfully then you should know which one to favour and when. The rule helps you in making a decision as well; if you are not sure then select composition.
Summary: Composition :The coupling is reduced by just having some smaller things you plug into something bigger, and the bigger object just calls the smaller object back. Generlization: From an API point of view defining that a method can be overridden is a stronger commitment than defining that a method can be called. (very few occassions when Generalization wins). And never forget that with composition you are using inheritance too, from a interface instead of a big class
Both approaches are used to solve different problems. You don't always need to aggregate over two or more classes when inheriting from one class.
Sometimes you do have to aggregate a single class because that class is sealed or has otherwise non-virtual members you need to intercept so you create a proxy layer that obviously isn't valid in terms of inheritance but so long as the class you are proxying has an interface you can subscribe to this can work out fairly well.

Is Inheritance really needed?

I must confess I'm somewhat of an OOP skeptic. Bad pedagogical and laboral experiences with object orientation didn't help. So I converted into a fervent believer in Visual Basic (the classic one!).
Then one day I found out C++ had changed and now had the STL and templates. I really liked that! Made the language useful. Then another day MS decided to apply facial surgery to VB, and I really hated the end result for the gratuitous changes (using "end while" instead of "wend" will make me into a better developer? Why not drop "next" for "end for", too? Why force the getter alongside the setter? Etc.) plus so much Java features which I found useless (inheritance, for instance, and the concept of a hierarchical framework).
And now, several years afterwards, I find myself asking this philosophical question: Is inheritance really needed?
The gang-of-four say we should favor object composition over inheritance. And after thinking of it, I cannot find something you can do with inheritance you cannot do with object aggregation plus interfaces. So I'm wondering, why do we even have it in the first place?
Any ideas? I'd love to see an example of where inheritance would be definitely needed, or where using inheritance instead of composition+interfaces can lead to a simpler and easier to modify design. In former jobs I've found if you need to change the base class, you need to modify also almost all the derived classes for they depended on the behaviour of parent. And if you make the base class' methods virtual... then not much code sharing takes place :(
Else, when I finally create my own programming language (a long unfulfilled desire I've found most developers share), I'd see no point in adding inheritance to it...
Really really short answer: No. Inheritance is not needed because only byte code is truly needed. But obviously, byte code or assemble is not a practically way to write your program. OOP is not the only paradigm for programming. But, I digress.
I went to college for computer science in the early 2000s when inheritance (is a), compositions (has a), and interfaces (does a) were taught on an equal footing. Because of this, I use very little inheritance because it is often suited better by composition. This was stressed because many of the professors had seen bad code (along with what you have described) because of abuse of inheritance.
Regardless of creating a language with or without inheritances, can you create a programming language which prevents bad habits and bad design decisions?
I think asking for situations where inheritance is really needed is missing the point a bit. You can fake inheritance by using an interface and some composition. This doesnt mean inheritance is useless. You can do anything you did in VB6 in assembly code with some extra typing, that doesn't mean VB6 was useless.
I usually just start using an interface. Sometimes I notice I actually want to inherit behaviour. That usually means I need a base class. It's that simple.
Inheritance defines an "Is-A" relationship.
class Point( object ):
# some set of features: attributes, methods, etc.
class PointWithMass( Point ):
# An additional feature: mass.
Above, I've used inheritance to formally declare that PointWithMass is a Point.
There are several ways to handle object P1 being a PointWithMass as well as Point. Here are two.
Have a reference from PointWithMass object p1 to some Point object p1-friend. The p1-friend has the Point attributes. When p1 needs to engage in Point-like behavior, it needs to delegate the work to its friend.
Rely on language inheritance to assure that all features of Point are also applicable to my PointWithMass object, p1. When p1 needs to engage in Point-like behavior, it already is a Point object and can just do what needs to be done.
I'd rather not manage the extra objects floating around to assure that all superclass features are part of a subclass object. I'd rather have inheritance to be sure that each subclass is an instance of it's own class, plus is an instance of all superclasses, too.
Edit.
For statically-typed languages, there's a bonus. When I rely on the language to handle this, a PointWithMass can be used anywhere a Point was expected.
For really obscure abuse of inheritance, read about C++'s strange "composition through private inheritance" quagmire. See Any sensible examples of creating inheritance without creating subtyping relations? for some further discussion on this. It conflates inheritance and composition; it doesn't seem to add clarity or precision to the resulting code; it only applies to C++.
The GoF (and many others) recommend that you only favor composition over inheritance. If you have a class with a very large API, and you only want to add a very small number of methods to it, leaving the base implementation alone, I would find it inappropriate to use composition. You'd have to re-implement all of the public methods of the encapsulated class to just return their value. This is a waste of time (programmer and CPU) when you can just inherit all of this behavior, and spend your time concentrating on new methods.
So, to answer your question, no you don't absolutely need inheritance. There are, however, many situations where it's the right design choice.
The problem with inheritance is that it conflates the issue of sub-typing (asserting an is-a relationship) and code reuse (e.g., private inheritance is for reuse only).
So, no it's an overloaded word that we don't need. I'd prefer sub-typing (using the 'implements' keyword) and import (kinda like Ruby does it in class definitions)
Inheritance lets me push off a whole bunch of bookkeeping onto the compiler because it gives me polymorphic behavior for object hierarchies that I would otherwise have to create and maintain myself. Regardless of how good a silver bullet OOP is, there will always be instances where you want to employ a certain type of behavior because it just makes sense to do. And ultimately, that's the point of OOP: it makes a certain class of problems much easier to solve.
The downsides of composition is that it may disguise the relatedness of elements and it may be harder for others to understand. With,say, a 2D Point class and the desire to extend it to higher dimensions, you would presumably have to add (at least) Z getter/setter, modify getDistance(), and maybe add a getVolume() method. So you have the Objects 101 elements: related state and behavior.
A developer with a compositional mindset would presumably have defined a getDistance(x, y) -> double method and would now define a getDistance(x, y, z) -> double method. Or, thinking generally, they might define a getDistance(lambdaGeneratingACoordinateForEveryAxis()) -> double method. Then they would probably write createTwoDimensionalPoint() and createThreeDimensionalPoint() factory methods (or perhaps createNDimensionalPoint(n) ) that would stitch together the various state and behavior.
A developer with an OO mindset would use inheritance. Same amount of complexity in the implementation of domain characteristics, less complexity in terms of initializing the object (constructor takes care of it vs. a Factory method), but not as flexible in terms of what can be initialized.
Now think about it from a comprehensibility / readability standpoint. To understand the composition, one has a large number of functions that are composed programmatically inside another function. So there's little in terms of static code 'structure' (files and keywords and so forth) that makes the relatedness of Z and distance() jump out. In the OO world, you have a great big flashing red light telling you the hierarchy. Additionally, you have an essentially universal vocabulary to discuss structure, widely known graphical notations, a natural hierarchy (at least for single inheritance), etc.
Now, on the other hand, a well-named and constructed Factory method will often make explicit more of the sometimes-obscure relationships between state and behavior, since a compositional mindset facilitates functional code (that is, code that passes state via parameters, not via this ).
In a professional environment with experienced developers, the flexibility of composition generally trumps its more abstract nature. However, one should never discount the importance of comprehensibility, especially in teams that have varying degrees of experience and/or high levels of turnover.
Inheritance is an implementation decision. Interfaces almost always represent a better design, and should usually be used in an external API.
Why write a lot of boilerplate code forwarding method calls to a composed member object when the compiler will do it for you with inheritance?
This answer to another question summarises my thinking pretty well.
Does anyone else remember all of the OO-purists going ballistic over the COM implementation of "containment" instead of "inheritance?" It achieved essentially the same thing, but with a different kind of implementation. This reminds me of your question.
I strictly try to avoid religious wars in software development. ("vi" OR "emacs" ... when everybody knows its "vi"!) I think they are a sign of small minds. Comp Sci Professors can afford to sit around and debate these things. I'm working in the real world and could care less. All of this stuff are simply attempts at giving useful solutions to real problems. If they work, people will use them. The fact that OO languages and tools have been commercially available on a wide scale for going on 20 years is a pretty good bet that they are useful to a lot of people.
There are a lot of features in a programming language that are not really needed. But they are there for a variety of reasons that all basically boil down to reusability and maintainability.
All a business cares about is producing (quality of course) cheaply and quickly.
As a developer you help do this is by becoming more efficient and productive. So you need to make sure the code you write is easily reusable and maintainable.
And, among other things, this is what inheritance gives you - the ability to reuse without reinventing the wheel, as well as the ability to easily maintain your base object without having to perform maintenance on all similar objects.
There's lots of useful usages of inheritance, and probably just as many which are less useful. One of the useful ones is the stream class.
You have a method that should be able stream data. By using the stream base class as input to the method you ensure that your method can be used to write to many kinds of streams without change. To the file system, over the network, with compression, etc.
No.
for me, OOP is mostly about encapsulation of state and behavior and polymorphism.
and that is. but if you want static type checking, you'll need some way to group different types, so the compiler can check while still allowing you to use new types in place of another, related type. creating a hierarchy of types lets you use the same concept (classes) for types and for groups of types, so it's the most widely used form.
but there are other ways, i think the most general would be duck typing, and closely related, prototype-based OOP (which isn't inheritance in fact, but it's usually called prototype-based inheritance).
Depends on your definition of "needed". No, there is nothing that is impossible to do without inheritance, although the alternative may require more verbose code, or a major rewrite of your application.
But there are definitely cases where inheritance is useful. As you say, composition plus interfaces together cover almost all cases, but what if I want to supply a default behavior? An interface can't do that. A base class can. Sometimes, what you want to do is really just override individual methods. Not reimplement the class from scratch (as with an interface), but just change one aspect of it. or you may not want all members of the class to be overridable. Perhaps you have only one or two member methods you want the user to override, and the rest, which calls these (and performs validation and other important tasks before and after the user-overridden methods) are specified once and for all in the base class, and can not be overridden.
Inheritance is often used as a crutch by people who are too obsessed with Java's narrow definition of (and obsession with) OOP though, and in most cases I agree, it's the wrong solution, as if the deeper your class hierarchy, the better your software.
Inheritance is a good thing when the subclass really is the same kind of object as the superclass. E.g. if you're implementing the Active Record pattern, you're attempting to map a class to a table in the database, and instances of the class to a row in the database. Consequently, it is highly likely that your Active Record classes will share a common interface and implementation of methods like: what is the primary key, whether the current instance is persisted, saving the current instance, validating the current instance, executing callbacks upon validation and/or saving, deleting the current instance, running a SQL query, returning the name of the table that the class maps to, etc.
It also seems from how you phrase your question that you're assuming that inheritance is single but not multiple. If we need multiple inheritance, then we have to use interfaces plus composition to pull off the job. To put a fine point about it, Java assumes that implementation inheritance is singular and interface inheritance can be multiple. One need not go this route. E.g. C++ and Ruby permit multiple inheritance for your implementation and your interface. That said, one should use multiple inheritance with caution (i.e. keep your abstract classes virtual and/or stateless).
That said, as you note, there are too many real-life class hierarchies where the subclasses inherit from the superclass out of convenience rather than bearing a true is-a relationship. So it's unsurprising that a change in the superclass will have side-effects on the subclasses.
Not needed, but usefull.
Each language has got its own methods to write less code. OOP sometimes gets convoluted, but I think that is the responsability of the developers, the OOP platform is usefull and sharp when it is well used.
I agree with everyone else about the necessary/useful distinction.
The reason I like OOP is because it lets me write code that's cleaner and more logically organized. One of the biggest benefits comes from the ability to "factor-up" logic that's common to a number of classes. I could give you concrete examples where OOP has seriously reduced the complexity of my code, but that would be boring for you.
Suffice it to say, I heart OOP.
Absolutely needed? no,
But think of lamps. You can create a new lamp from scratch each time you make one, or you can take properties from the original lamp and make all sorts of new styles of lamp that have the same properties as the original, each with their own style.
Or you can make a new lamp from scratch or tell people to look at it a certain way to see the light, or , or, or
Not required, but nice :)
Thanks to all for your answers. I maintain my position that, strictly speaking, inheritance isn't needed, though I believe I found a new appreciation for this feature.
Something else: In my job experience, I have found inheritance leads to simpler, clearer designs when it's brought in late in the project, after it's noticed a lot of the classes have much commonality and you create a base class. In projects where a grand-schema was created from the very beginning, with a lot of classes in an inheritance hierarchy, refactoring is usually painful and dificult.
Seeing some answers mentioning something similar makes me wonder if this might not be exactly how inheritance's supposed to be used: ex post facto. Reminds me of Stepanov's quote: "you don't start with axioms, you end up with axioms after you have a bunch of related proofs". He's a mathematician, so he ought to know something.
The biggest problem with interfaces is that they cannot be changed. Make an interface public, then change it (add a new method to it) and break million applications all around the world, because they have implemented your interface, but not the new method. The app may not even start, a VM may refuse to load it.
Use a base class (not abstract) other programmers can inherit from (and override methods as needed); then add a method to it. Every app using your class will still work, this method just won't be overridden by anyone, but since you provide a base implementation, this one will be used and it may work just fine for all subclasses of your class... it may also cause strange behavior because sometimes overriding it would have been necessary, okay, might be the case, but at least all those million apps in the world will still start up!
I rather have my Java application still running after updating the JDK from 1.6 to 1.7 with some minor bugs (that can be fixed over time) than not having it running it at all (forcing an immediate fix or it will be useless to people).
//I found this QA very useful. Many have answered this right. But i wanted to add...
1: Ability to define abstract interface - E.g., for plugin developers. Of course, you can use function pointers, but this is better and simpler.
2: Inheritance helps model types very close to their actual relationships. Sometimes a lot of errors get caught at compile time, because you have the right type hierarchy. For instance, shape <-- triangle (lets say there is a lot of code to be reused). You might want to compose triangle with a shape object, but shape is an incomplete type. Inserting dummy implementations like double getArea() {return -1;} will do, but you are opening up room for error. That return -1 can get executed some day!
3: void func(B* b); ... func(new D()); Implicit type conversion gives a great notational convenience since Derived is Base. I remember having read Straustrup saying that he wanted to make classes first class citizens just like fundamental data types (hence overloading operators etc). Implicit conversion from Derived to Base, behaves just like an implicit conversion from a data type to broader compatible one (short to int).
Inheritance and Composition have their own pros and cons.
Refer to this related SE question on pros of inheritance and cons of composition.
Prefer composition over inheritance?
Have a look at the example in this documentation link:
The example shows different use cases of overriding by using inheritance as a mean to achieve polymorphism.
In the following, inheritance is used to present a particular property for all of several specific incarnations of the same type thing. In this case, the GeneralPresenation has a properties that are relevant to all "presentation" (the data passed to an MVC view). The Master Page is the only thing using it and expects a GeneralPresentation, though the specific views expect more info, tailored to their needs.
public abstract class GeneralPresentation
{
public GeneralPresentation()
{
MenuPages = new List<Page>();
}
public IEnumerable<Page> MenuPages { get; set; }
public string Title { get; set; }
}
public class IndexPresentation : GeneralPresentation
{
public IndexPresentation() { IndexPage = new Page(); }
public Page IndexPage { get; set; }
}
public class InsertPresentation : GeneralPresentation
{
public InsertPresentation() {
InsertPage = new Page();
ValidationInfo = new PageValidationInfo();
}
public PageValidationInfo ValidationInfo { get; set; }
public Page InsertPage { get; set; }
}