How to remove the last layer from trained model in Tensorflow - tensorflow

I want to remove the last layer of 'faster_rcnn_nas_lowproposals_coco' model which downloaded from https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md.
I know I in Keras we can use model.layers.pop() to remove the last layer.
But I searched in the Internet and there are no equivalent function in tensorflow.
If there are no equivalent function in tensorflow, are there anyone can tell me how to load trained Model zoo by Keras?

You don't need to "pop" a layer, you just have to not load it:
For the example of Mobilenet (but put your downloaded model here) :
model = mobilenet.MobileNet()
x = model.layers[-2].output
The first line load the entire model, the second load the outputs of the before the last layer.
You can change layer[-x] with x being the outputs of the layer you want. So, for loading the model without the last layer, x should be equal to -2.
Then it's possible to use it like this :
x = Dense(256)(x)
predictions = Dense(15, activation = "softmax")(x)
model = Model(inputs = model.input, outputs = predictions)

Related

How to feed a Keras InputLayer without a model?

Let's take the following code as an example:
inputs = keras.layers.InputLayer(1).output
output = tf.random.uniform((1, )) * inputs
I want to feed inputs with value and have it propagate through the layers without using a Keras model.
How can it be done?

Keras remove activation function of last layer

I want to use ResNet50 with Imagenet weights.
The last layer of ResNet50 is (from here)
x = layers.Dense(1000, activation='softmax', name='fc1000')(x)
I need to keep the weights of this layer but remove the softmax function.
I want to manually change it so my last layer looks like this
x = layers.Dense(1000, name='fc1000')(x)
but the weights stay the same.
Currently I call my net like this
resnet = Sequential([
Input(shape(224,224,3)),
ResNet50(weights='imagenet', input_shape(224,224,3))
])
I need the Input layer because otherwise the model.compile says that placeholders aren't filled.
Generally there are two ways of achievieng this:
Quick way - supported functions:
To change the final layer's activation function, you can pass an argument classifier_activation.
So in order to get rid of activation all together, your module can be called like:
import tensorflow as tf
resnet = tf.keras.Sequential([
tf.keras.layers.Input(shape=(224,224,3)),
tf.keras.applications.ResNet50(
weights='imagenet',
input_shape=(224,224,3),
pooling="avg",
classifier_activation=None
)
])
This however, is not going to work if the you want a different function, that is not supported by Keras classifer_activation parameter (e. g. custom activation function).
To achieve this you can use the workaround solution:
Long way - copy the model's weights
This solution proposes copying the original model's weights onto your custom one. This approach works because apart from the activation function you are not chaning the model's architecture.
You need to:
1. Download original model.
2. Save it's weights.
3. Declare your modified version of the model (in your case, without the activation function).
4. Set the weights of the new model.
Below snippet explains this concept in more detail:
import tensorflow as tf
# 1. Download original resnet
resnet = tf.keras.Sequential([
tf.keras.layers.Input(shape=(224,224,3)),
tf.keras.applications.ResNet50(
weights='imagenet',
input_shape=(224,224,3),
pooling="avg"
)
])
# 2. Hold weights in memory:
imagenet_weights = resnet.get_weights()
# 3. Declare the model, but without softmax
resnet_no_softmax = tf.keras.Sequential([
tf.keras.layers.Input(shape=(224,224,3)),
tf.keras.applications.ResNet50(
include_top=False,
weights='imagenet',
input_shape=(224,224,3),
pooling="avg"
),
tf.keras.layers.Dense(1000, name='fc1000')
])
# 4. Pass the imagenet weights onto the second resnet
resnet_no_softmax.set_weights(imagenet_weights)
Hope this helps!

What is the easiest way to run a part of a model?

I'm dealing with Keras functional API.
Specifically for my experiments, I'm using Keras resnet50 model obtained with:
model = resnet50.ResNet50(weights='imagenet')
Obviously, to get the final output of the network we need to feed a value to the placeholder input_1.
My question is, can I somehow start inferencing this graph from the relu layer which is depicted at the bottom of the picture below, provided that I feed a value of the appropriate dimensions into it?
I tried to achieve this with Keras functions. Something like:
self.inp = model.input
self.outputs = [layer.output for layer in model.layers]
self.functor = K.function([self.inp, K.learning_phase()], [self.outputs[6], self.outputs[17]])
But this approach will not work, because again to inference any output I need to feed value into tensor.
Is recreating graph from scratch my best option here?
Thanks
If I got you right, you can just specify input and output nodes
base_model = tf.keras.applications.ResNet50(weights='imagenet')
inference_model = tf.keras.Model(inputs=base_model.input, outputs=base_model.get_layer('any_layer_name').output)
You can set the output to any layer name

Keras models in tensorflow

I'm building image processing network in tensorflow and I want to make use of texture loss. Texture loss seems simple to implement if you have pretrained model loaded.
I'm using TF to build the computational graph for my model and I want to incorporate Keras.application.VGG19 model to get output from layer 'block4_conv4'.
The problem is: I have two TF tensors target and result from my main model, how to feed them into keras VGG19 in the same session to compute their diff and use it in main loss for my model?
It seems following code does the trick
with tf.variable_scope("") as scope:
phi_func = VGG19(include_top=False, weights=None, input_shape=(128, 128, 3))
text_1 = phi_func(predicted)
scope.reuse_variables()
text_2 = phi_func(x)
text_loss = tf.reduce_mean((text_1 - text_2)**2)
right after session created I call phi_func.load_weights(path) to initiate weights

How to get weights in tf.layers.dense?

I wanna draw the weights of tf.layers.dense in tensorboard histogram, but it not show in the parameter, how could I do that?
The weights are added as a variable named kernel, so you could use
x = tf.dense(...)
weights = tf.get_default_graph().get_tensor_by_name(
os.path.split(x.name)[0] + '/kernel:0')
You can obviously replace tf.get_default_graph() by any other graph you are working in.
I came across this problem and just solved it. tf.layers.dense 's name is not necessary to be the same with the kernel's name's prefix. My tensor is "dense_2/xxx" but it's kernel is "dense_1/kernel:0". To ensure that tf.get_variable works, you'd better set the name=xxx in the tf.layers.dense function to make two names owning same prefix. It works as the demo below:
l=tf.layers.dense(input_tf_xxx,300,name='ip1')
with tf.variable_scope('ip1', reuse=True):
w = tf.get_variable('kernel')
By the way, my tf version is 1.3.
The latest tensorflow layers api creates all the variables using the tf.get_variable call. This ensures that if you wish to use the variable again, you can just use the tf.get_variable function and provide the name of the variable that you wish to obtain.
In the case of a tf.layers.dense, the variable is created as: layer_name/kernel. So, you can obtain the variable by saying:
with tf.variable_scope("layer_name", reuse=True):
weights = tf.get_variable("kernel") # do not specify
# the shape here or it will confuse tensorflow into creating a new one.
[Edit]: The new version of Tensorflow now has both Functional and Object-Oriented interfaces to the layers api. If you need the layers only for computational purposes, then using the functional api is a good choice. The function names start with small letters for instance -> tf.layers.dense(...). The Layer Objects can be created using capital first letters e.g. -> tf.layers.Dense(...). Once you have a handle to this layer object, you can use all of its functionality. For obtaining the weights, just use obj.trainable_weights this returns a list of all the trainable variables found in that layer's scope.
I am going crazy with tensorflow.
I run this:
sess.run(x.kernel)
after training, and I get the weights.
Comes from the properties described here.
I am saying that I am going crazy because it seems that there are a million slightly different ways to do something in tf, and that fragments the tutorials around.
Is there anything wrong with
model.get_weights()
After I create a model, compile it and run fit, this function returns a numpy array of the weights for me.
In TF 2 if you're inside a #tf.function (graph mode):
weights = optimizer.weights
If you're in eager mode (default in TF2 except in #tf.function decorated functions):
weights = optimizer.get_weights()
in TF2 weights will output a list in length 2
weights_out[0] = kernel weight
weights_out[1] = bias weight
the second layer weight (layer[0] is the input layer with no weights) in a model in size: 50 with input size: 784
inputs = keras.Input(shape=(784,), name="digits")
x = layers.Dense(50, activation="relu", name="dense_1")(inputs)
x = layers.Dense(50, activation="relu", name="dense_2")(x)
outputs = layers.Dense(10, activation="softmax", name="predictions")(x)
model = keras.Model(inputs=inputs, outputs=outputs)
model.compile(...)
model.fit(...)
kernel_weight = model.layers[1].weights[0]
bias_weight = model.layers[1].weights[1]
all_weight = model.layers[1].weights
print(len(all_weight)) # 2
print(kernel_weight.shape) # (784,50)
print(bias_weight.shape) # (50,)
Try to make a loop for getting the weight of each layer in your sequential network by printing the name of the layer first which you can get from:
model.summary()
Then u can get the weight of each layer running this code:
for layer in model.layers:
print(layer.name)
print(layer.get_weights())