My current CMake workflow for a new debug build is:
mkdir debug-build
cd debug-build
ccmake /path/to/sources
I see this:
I press c to configure, then t to toggle advanced mode. It now looks like this:
I can now change, e.g. CMAKE_BUILD_TYPE to Debug or enable warnings by setting CMAKE_CXX_FLAGS, etc.
How do I do all this non-interactively, from a shell script?
cmake itself is non interactive. With many variables to be set I find it easier to use the -C <initial-cache> option with a file that sets any special cache entries. You can also build at the command line with cmake --build ..
Related
I'm trying to get familiar with sanitizers as ASAN, LSAN etc and got a lot of useful information already from here: https://developers.redhat.com/blog/2021/05/05/memory-error-checking-in-c-and-c-comparing-sanitizers-and-valgrind
I am able to run all sort of sanitizers on specific files, as shown on the site, like this:
clang -g -fsanitize=address -fno-omit-frame-pointer -g ../TestFiles/ASAN_TestFile.c
ASAN_SYMBOLIZER_PATH=/usr/local/bin/llvm-symbolizer ./a.out >../Logs/ASAN_C.log 2>&1
which generates a log with found issue. Now I would like to extend this to run upon building the project with cmake. This is the command to build it at the moment:
cmake -S . -B build
cd build
make
Is there any way I can use this script with adding the sanitizers, without having to alter the cmakelist.txt file??
For instance something like this:
cmake -S . -B build
cd build
make -fsanitize=address
./a.out >../Logs/ASAN_C.log 2>&1
The reason is that I want to be able to build the project multiple times with different sanitizers (since they cannot be used together) and have a log created without altering the cmakelist.txt file (just want to be able to quickly test the whole project for memory issues instead of doing it for each file created).
You can add additional compiler flags from command line during the build configuration:
cmake -D CMAKE_CXX_FLAGS="-fsanitize=address" -D CMAKE_C_FLAGS="-fsanitize=address" /path/to/CMakeLists.txt
If your CMakeLists.txt is configured properly above should work. If that does not work then try adding flags as environment variable:
cmake -E env CXXFLAGS="-fsanitize=address" CFLAGS="-fsanitize=address" cmake /path/to/CMakeLists.txt
My project contains a custom target which generates some output via .cmake script. It looks like this:
add_custom_target(TargetName
COMMAND ${CMAKE_COMMAND} -P ${CMAKE_SOURCE_DIR}/cmake/script.cmake
BYPRODUCTS ${CMAKE_CURRENT_BINARY_DIR}/generated/output
WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}
VERBATIM
)
But now I want to set come cache variables inside the script. I tried doing like that:
message("MY_CACHE_VARIABLE = ${MY_CACHE_VARIABLE}")
set(MY_CACHE_VARIABLE "VALUE" CACHE INTERNAL "")
And I faced with the problem that cache variables are not saved. It always prints me empty output:
MY_CACHE_VARIABLE =
I already tried setting working directory as CMAKE_BINARY_DIR, or passing CMAKE_BINARY_DIR of the last argument of cmake command, or passing -B ${CMAKE_BINARY_DIR} or -C ${CMAKE_BINARY_DIR}/CMakeCache.txt as arguments and etc. None of these worked.
So is there any way to reuse existing cache inside CMake subprocess or I just should write my own cache inside the script?
You have to distinguish between running CMake to generate build files (for Make, Ninja, etc.) and running CMake in script mode:
Script mode simply runs the commands in the given CMake Language source file and does not generate a build system. It does not allow CMake commands that define build targets or actions.
-- cmake-language(7)
No configure or generate step is performed and the cache is not modified.
-- cmake(1)
So in script mode (-P), CMake is not aware of the cache or any variable/target/etc. defined in your regular CMakeLists.txt files. It is more similar to executing a bash/shell script than to processing a "usual" CMakeLists.txt.
But don't worry, there is still a solution to your problem. You can simply pass your arguments as -D options to your script:
add_custom_target(TargetName
COMMAND ${CMAKE_COMMAND}
-DMY_VAR="..."
-DANOTHER_VAR="..."
-P ${CMAKE_SOURCE_DIR}/cmake/script.cmake
...
)
Note however:
If variables are defined using -D, this must be done before the -P argument.
-- cmake(1)
I want my CMake project to be built by make -j N, whenever I call make from the terminal. I don't want to set -j option manually every time.
For that, I set CMAKE_MAKE_PROGRAM variable to the specific command line. I use the ProcessorCount() function, which gives the number of procesors to perform build in parallel.
When I do make, I do not see any speed up. However if I do make -j N, then it is built definitely faster.
Would you please help me on this issue? (I am developing this on Linux.)
Here is the snippet of the code that I use in CMakeList.txt:
include(ProcessorCount)
ProcessorCount(N)
message("number of processors: " ${N})
if(NOT N EQUAL 0)
set(CTEST_BUILD_FLAGS -j${N})
set(ctest_test_args ${ctest_test_args} PARALLEL_LEVEL ${N})
set(CMAKE_MAKE_PROGRAM "${CMAKE_MAKE_PROGRAM} -j ${N}")
endif()
message("cmake make program" ${CMAKE_MAKE_PROGRAM})
Thank you very much.
In case you want to speed up the build you can run multiple make processes in parallel but not cmake.
To perform every build with predefined number of parallel processes you can define this in MAKEFLAGS.
Set MAKEFLAGS in your environment script, e.g. ~/.bashrc as you want:
export MAKEFLAGS=-j8
On Linux the following sets MAKEFLAGS to the number of CPUs - 1: (Keep one CPU free for other tasks while build) and is useful in environments with dynamic ressources, e.g. VMware:
export MAKEFLAGS=-j$(($(grep -c "^processor" /proc/cpuinfo) - 1))
New from cmake v3.12 on:
The command line has a new option --parallel <JOBS>.
Example:
cmake --build build_arm --parallel 4 --target all
Example with number of CPUs- 1 using nproc:
cmake --build build_arm --parallel $(($(nproc) - 1)) --target all
Via setting the CMAKE_MAKE_PROGRAM variable you want to affect the build process. But:
This variable affects only the build via cmake --build, not on native tool (make) call:
The CMAKE_MAKE_PROGRAM variable is set for use by project code. The value is also used by the cmake(1) --build and ctest(1) --build-and-test tools to launch the native build process.
This variable should be a CACHEd one. It is used in such way by make-like generators:
These generators store CMAKE_MAKE_PROGRAM in the CMake cache so that it may be edited by the user.
That is, you need to set this variable with
set(CMAKE_MAKE_PROGRAM <program> CACHE PATH "Path to build tool" FORCE)
This variable should refer to the executable itself, not to a program with arguments:
The value may be the full path to an executable or just the tool name if it is expected to be in the PATH.
That is, value "make -j 2" cannot be used for that variable (splitting arguments as list
set(CMAKE_MAKE_PROGRAM make -j 2 CACHE PATH "Path to build tool" FORCE)
wouldn't help either).
In summary, you may redefine the behavior of cmake --build calls with setting the CMAKE_MAKE_PROGRAM variable to the script, which calls make with parallel options. But you may not affect the behavior of direct make calls.
You may set the env variable MAKEFLAGS using this command
export MAKEFLAGS=-j$(nproc)
My solution is to have a small script which will run make include all sorts of other features, not just the number of CPUs.
I call my script mk and I do a chmod 755 mk so I can run it with ./mk in the root of my project. I also have a few flags to be able to run various things with a simple command line. For example, while working on the code and I get many errors, I like to pipe the output to less. I can do that with ./mk -l without having to retype all the heavy duty Unix stuff...
As you can see, I have the -j4 in a couple of places where it makes sense. For the -l option, I don't want it because in this case it would eventually cause multiple errors to be printed at the same time (I tried that before!)
#!/bin/sh -e
#
# Execute make
case "$1" in
"-l")
make -C ../BUILD/Debug 2>&1 | less -R
;;
"-r")
make -j4 -C ../BUILD/Release
;;
"-d")
rm -rf ../BUILD/Debug/doc/lpp-doc-?.*.tar.gz \
../BUILD/Debug/doc/lpp-doc-?.*
make -C ../BUILD/Debug
;;
"-t")
make -C ../BUILD/Debug
../BUILD/Debug/src/lpp tests/suite/syntax-print.logo
g++ -std=c++14 -I rt l.cpp rt/*.cpp
;;
*)
make -j4 -C ../BUILD/Debug
;;
esac
# From the https://github.com/m2osw/lpp project
With CMake, it wouldn't work unless, as Tsyvarev mentioned, you create your own script. But I personally don't think it's sensible to call make from your make script. Plus it could break a build process which would not expect that strange script. Finally, my script, as I mentioned, allows me to vary the options depending on the situation.
I usually use alias in linux to set cm equal to cmake .. && make -j12. Or write a shell to specify make and clean progress ...
alias cm='cmake .. && make -j12'
Then use cm to make in a single command.
all of a sudden I have started seeing this cmake doohickey. Great, one more thing to learn now that I'm used to configure/ make / make install
how does it work and what is the equivalent of configure --help with cmake, to show the build options of a particular source code? thanks
http://dev.mysql.com/doc/internals/en/autotools-to-cmake.html
You can run CMake in interactive mode to get useful information about (and the ability to set) each cache variable in the current CMakeLists.txt:
cmake -i <path-to-source>
If you just want to list all the non-advanced cached variables, run:
cmake -L <path-to-source>
For any of these which are documented CMake variables (e.g. CMAKE_INSTALL_PREFIX), you can get further info by running:
cmake --help-variable CMAKE_INSTALL_PREFIX
I do cmake . && make all install. This works, but installs to /usr/local.
I need to install to a different prefix (for example, to /usr).
What is the cmake and make command line to install to /usr instead of /usr/local?
You can pass in any CMake variable on the command line, or edit cached variables using ccmake/cmake-gui. On the command line,
cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr . && make all install
Would configure the project, build all targets and install to the /usr prefix. The type (PATH) is not strictly necessary, but would cause the Qt based cmake-gui to present the directory chooser dialog.
Some minor additions as comments make it clear that providing a simple equivalence is not enough for some. Best practice would be to use an external build directory, i.e. not the source directly. Also to use more generic CMake syntax abstracting the generator.
mkdir build && cd build && cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr .. && cmake --build . --target install --config Release
You can see it gets quite a bit longer, and isn't directly equivalent anymore, but is closer to best practices in a fairly concise form... The --config is only used by multi-configuration generators (i.e. MSVC), ignored by others.
The ":PATH" part in the accepted answer can be omitted. This syntax may be more memorable:
cmake -DCMAKE_INSTALL_PREFIX=/usr . && make all install
...as used in the answers here.
Note that in both CMake and Autotools you don't always have to set the installation path at configure time. You can use DESTDIR at install time (see also here) instead as in:
make DESTDIR=<installhere> install
See also this question which explains the subtle difference between DESTDIR and PREFIX.
This is intended for staged installs and to allow for storing programs in a different location from where they are run e.g. /etc/alternatives via symbolic links.
However, if your package is relocatable and doesn't need any hard-coded (prefix) paths set via the configure stage you may be able to skip it.
So instead of:
cmake -DCMAKE_INSTALL_PREFIX=/usr . && make all install
you would run:
cmake . && make DESTDIR=/usr all install
Note that, as user7498341 points out, this is not appropriate for cases where you really should be using PREFIX.
The way I build CMake projects cross platform is the following:
/project-root> mkdir build
/project-root> cd build
/project-root/build> cmake -G "<generator>" -DCMAKE_INSTALL_PREFIX=stage ..
/project-root/build> cmake --build . --target=install --config=Release
The first two lines create the out-of-source build directory
The third line generates the build system specifying where to put the installation result (which I always place in ./project-root/build/stage - the path is always considered relative to the current directory if it is not absolute)
The fourth line builds the project configured in . with the buildsystem configured in the line before. It will execute the install target which also builds all necessary dependent targets if they need to be built and then copies the files into the CMAKE_INSTALL_PREFIX (which in this case is ./project-root/build/stage. For multi-configuration builds, like in Visual Studio, you can also specify the configuration with the optional --config <config> flag.
The good part when using the cmake --build command is that it works for all generators (i.e. makefiles and Visual Studio) without needing different commands.
Afterwards I use the installed files to create packages or include them in other projects...
Starting with CMake 3.15, the correct way of achieving this would be using:
cmake --install <dir> --prefix "/usr"
Official Documentation
Starting with CMake 3.21 you can use the --install-prefix option instead of manually setting CMAKE_INSTALL_PREFIX.
The modern equivalent of configure --prefix=DIR && make all install would now be:
cmake -B build --install-prefix=DIR
cmake --build build
cmake --install build
Regarding Bruce Adams answer:
Your answer creates dangerous confusion. DESTDIR is intended for
installs out of the root tree. It allows one to see what would be
installed in the root tree if one did not specify DESTDIR.
PREFIX is the base directory upon which the real installation is
based.
For example, PREFIX=/usr/local indicates that the final destination
of a package is /usr/local. Using DESTDIR=$HOME will install the files
as if $HOME was the root (/). If, say DESTDIR, was /tmp/destdir, one
could see what 'make install' would affect. In that spirit, DESTDIR
should never affect the built objects.
A makefile segment to explain it:
install:
cp program $DESTDIR$PREFIX/bin/program
Programs must assume that PREFIX is the base directory of the final
(i.e. production) directory. The possibility of symlinking a program
installed in DESTDIR=/something only means that the program does not
access files based upon PREFIX as it would simply not work. cat(1)
is a program that (in its simplest form) can run from anywhere.
Here is an example that won't:
prog.pseudo.in:
open("#prefix#/share/prog.db")
...
prog:
sed -e "s/#prefix#/$PREFIX/" prog.pseudo.in > prog.pseudo
compile prog.pseudo
install:
cp prog $DESTDIR$PREFIX/bin/prog
cp prog.db $DESTDIR$PREFIX/share/prog.db
If you tried to run prog from elsewhere than $PREFIX/bin/prog,
prog.db would never be found as it is not in its expected location.
Finally, /etc/alternatives really does not work this way. There are
symlinks to programs installed in the root tree (e.g. vi -> /usr/bin/nvi,
vi -> /usr/bin/vim, etc.).
It is considered bad practice to invoke the actual build system (e.g. via the make command) if using CMake. It is highly recommended to do it like this:
Configure + Generation stages:
cmake -S foo -B _builds/foo/debug -G "Unix Makefiles" -D CMAKE_BUILD_TYPE:STRING=Debug -D CMAKE_DEBUG_POSTFIX:STRING=d -D CMAKE_INSTALL_PREFIX:PATH=/usr
Build and Install stages:
cmake --build _builds/foo/debug --config Debug --target install
When following this approach, the generator can be easily switched (e.g. -G Ninja for Ninja) without having to remember any generator-specific commands.
Note that the CMAKE_BUILD_TYPE variable is only used by single-config generators and the --config argument of the build command is only used by multi-config generators.
Lots of answer, but I figured I'd do a summary to properly group them and explain the differences.
First of all, you can define that prefix one of two ways: during configuration time, or when installing, and that's really up to your needs.
During configuration time
Two options:
cmake -S $src_dir -B $build_dir -D CMAKE_INSTALL_PREFIX=$install_dir
cmake -S $src_dir -B $build_dir --install-prefix=$install_dir # Since CMake 3.21
During install time
Advantage: no need to reconfigure if you want to change it.
Two options:
cmake DESTDIR=$install_dir --build $build_dir --target=install # Makefile only
cmake --install $build_dir --prefix=$install_dir