How to scale out apache atlas - apache

There is no info provided in atlas document on how to scale it.
Apache atlas is connected to cassandra or hbase in the backend which can scale out ,but I dont know how apache atlas engine ( rest web-service and request processor ) can scale out.
I can install multiple instances of it on different machine and have load balancer in front of it to fan out the request. But would this model help ? Does it do any kind of locking and do db transaction, so that this model would not work.
Does someone know how apache atlas scales out ?
Thanks.

So Apache Atlas runs Kafka as the message queue under the covers, and in my experience, the way they have designed the Kafka queue (consumer group that says you should ONLY have ONE consumer) is the choke point.
Not only that, when you look at the code, the consumer has a poll time for the broker of 1 sec hard coded into the consumer. Put these two together, and that means that if the consumer can't process the messages from the various producers (HIVE, Spark, etc) within that second, the broker then disengages the ONLY consumer, and waits for a non-existent consumer to pick up messages...
I need to design something similar, but this is as far as I have got...
Hope that helps somewhat...

Please refer to this page. http://atlas.apache.org/#/HighAvailability
Atlas does not support actual horizontal scale-out.
All the requests are handled by the 'Active instance'. the 'Passive instances' just forward all the requests to the 'Active instance'.

Related

RabbitMQ: Shovel vs Federation for Microservice Communication

I've spent quite a bit of time trying to figure out whether I should use the RabbitMQ federation plugin or shovel.
Basically I have two microservices. I want one of them to send a message to another. Each microservice has a different rabbitMQ cluster, so I need to use Federation/shovel.
I read this post When to use RabbitMQ shovels and when Federation plugin? and still couldn't figure it out / make a decision.
I want to satisfy the following:
Loose coupling
Microservices don't know about each other -- I.e the first microservice emits a message saying "i'm done doing x". And the second microservice just listens to that 'event' and acts accordingly..
In the future I 'might' want to add more microservices, each with their own rabbitMQ cluster / vhost.
Based on this information - what do you recommend, shovel or federation?
Why not just have one cluster for everything? RabbitMQ is build for handling 10k+ exchanges and queues, actually there is no upper limit except memory or disk space. Setting up a cluster for each microservice is too much work and creates unnecessary overhead. Using vhost should also not be used for this, but for each business area.
I'm only using shovels and I use them to transfer messages from my production environment to test, so I can test with real data. It's very easy to setup with scripts. And yes, you should only do this with scripts. Using the UI is too slow.
I know this doesn't answer your question directly, but I hope it has given you some food for thought.
Happy messaging!

How to load balancing ActiveMQ with persistent message

I have a middleware based on Apache Camel which does a transaction like this:
from("amq:job-input")
to("inOut:businessInvoker-one") // Into business processor
to("inOut:businessInvoker-two")
to("amq:job-out");
Currently it works perfectly. But I can't scale it up, let say from 100 TPS to 500 TPS. I already
Raised the concurrent consumers settings and used empty businessProcessor
Configured JAVA_XMX and PERMGEN
to speed up the transaction.
According to Active MQ web Console, there are so many messages waiting for being processed on scenario 500TPS. I guess, one of the solution is scale the ActiveMQ up. So I want to use multiple brokers in cluster.
According to http://fuse.fusesource.org/mq/docs/mq-fabric.html (Section "Topologies"), configuring ActiveMQ in clustering mode is suitable for non-persistent message. IMHO, it is true that it's not suitable, because all running brokers use the same store file. But, what about separating the store file? Now it's possible right?
Could anybody explain this? If it's not possible, what is the best way to load balance persistent message?
Thanks
You can share the load of persistent messages by creating 2 master/slave pairs. The master and slave share their state either though a database or a shared filesystem so you need to duplicate that setup.
Create 2 master slave pairs, and configure so called "network connectors" between the 2 pairs. This will double your performance without risk of loosing messages.
See http://activemq.apache.org/networks-of-brokers.html
This answer relates to an version of the question before the Camel details were added.
It is not immediately clear what exactly it is that you want to load balance and why. Messages across consumers? Producers across brokers? What sort of concern are you trying to address?
In general you should avoid using networks of brokers unless you are trying to address some sort of geographical use case, have too many connections for a signle broker to handle, or if a single broker (which could be a pair of brokers configured in HA) is not giving you the throughput that you require (in 90% of cases it will).
In a broker network, each node has its own store and passes messages around by way of a mechanism called store-and-forward. Have a read of Understanding broker networks for an explanation of how this works.
ActiveMQ already works as a kind of load balancer by distributing messages evenly in a round-robin fashion among the subscribers on a queue. So if you have 2 subscribers on a queue, and send it a stream of messages A,B,C,D; one subcriber will receive A & C, while the other receives B & D.
If you want to take this a step further and group related messages on a queue so that they are processed consistently by only one subscriber, you should consider Message Groups.
Adding consumers might help to a point (depends on the number of cores/cpus your server has). Adding threads beyond the point your "Camel server" is utilizing all available CPU for the business processing makes no sense and can be conter productive.
Adding more ActiveMQ machines is probably needed. You can use an ActiveMQ "network" to communicate between instances that has separated persistence files. It should be straight forward to add more brokers and put them into a network.
Make sure you performance test along the road to make sure what kind of load the broker can handle and what load the camel processor can handle (if at different machines).
When you do persistent messaging - you likely also want transactions. Make sure you are using them.
If all running brokers use the same store file or tx-supported database for persistence, then only the first broker to start will be active, while others are in standby mode until the first one loses its lock.
If you want to loadbalance your persistence, there were two way that we could try to do:
configure several brokers in network-bridge mode, then send messages
to any one and consumer messages from more than one of them. it can
loadbalance the brokers and loadbalance the persistences.
override the persistenceAdapter and use the database-sharding middleware
(such as tddl:https://github.com/alibaba/tb_tddl) to store the
messages by partitions.
Your first step is to increase the number of workers that are processing from ActiveMQ. The way to do this is to add the ?concurrentConsumers=10 attribute to the starting URI. The default behaviour is that only one thread consumes from that endpoint, leading to a pile up of messages in ActiveMQ. Adding more brokers won't help.
Secondly what you appear to be doing could benefit from a Staged Event-Driven Architecture (SEDA). In a SEDA, processing is broken down into a number of stages which can have different numbers of consumer on them to even out throughput. Your threads consuming from ActiveMQ only do one step of the process, hand off the Exchange to the next phase and go back to pulling messages from the input queue.
You route can therefore be rewritten as 2 smaller routes:
from("activemq:input?concurrentConsumers=10").id("FirstPhase")
.process(businessInvokerOne)
.to("seda:invokeSecondProcess");
from("seda:invokeSecondProcess?concurentConsumers=20").id("SecondPhase")
.process(businessInvokerTwo)
.to("activemq:output");
The two stages can have different numbers of concurrent consumers so that the rate of message consumption from the input queue matches the rate of output. This is useful if one of the invokers is much slower than another.
The seda: endpoint can be replaced with another intermediate activemq: endpoint if you want message persistence.
Finally to increase throughput, you can focus on making the processing itself faster, by profiling the invokers themselves and optimising that code.

ActiveMQ: Reject connections from producers when persistent store fills

I would like to configure my ActiveMQ producers to failover (I'm using the Stomp protocol) when a broker reaches a configured limit. I want to allow consumers to continue consumption from the overloaded broker, unabated.
Reading ActiveMQ docs, it looks like I can configure ActiveMQ to do one of a few things when a broker reaches its limits (memory or disk):
Slow down messages using producerFlowControl="true" (by blocking the send)
Throw exceptions when using sendFailIfNoSpace="true"
Neither of the above, in which case..I'm not sure what happens? Reverts to TCP flow control?
It doesn't look like any of these things are designed to trigger a producer failover. A producer will failover when it fails to connect but not, as far as I can tell, when it fails to send (due to producer flow control, for example).
So, is it possible for me to configure a broker to refuse connections when it reaches its limits? Or is my best bet to detect slow down on the producer side, and to manually reconfigure my producers to use the a different broker at that time?
Thanks!
Your best bet is to use sendFailIfNoSpace, or better sendFailIfNoSpaceAfterTimeout. This will throw an exception up to your client, which can then attempt to resend the message to another broker at the application level (though you can encapsulate this logic over the top of your Stomp library, and use this facade from your code). Though if your ActiveMQ setup is correctly wired, your load both in terms of production and consumption should be more or less evenly distributed across your brokers, so this feature may not buy you a great deal.
You would probably get a better result if you concentrated on fast consumption of the messages, and increased the storage limits to smooth out peaks in load.

How to handle long asynchronous requests with pyramid and celery?

I'm setting up a web service with pyramid. A typical request for a view will be very long, about 15 min to finish. So my idea was to queue jobs with celery and a rabbitmq broker.
I would like to know what would be the best way to ensure that bad things cannot happen.
Specifically I would like to prevent the task queue from overflow for example.
A first mesure will be defining quotas per IP, to limit the number of requests a given IP can submit per hour.
However I cannot predict the number of involved IPs, so this cannot solve everything.
I have read that it's not possible to limit the queue size with celery/rabbitmq. I was thinking of retrieving the queue size before pushing a new item into it but I'm not sure if it's a good idea.
I'm not used to good practices in messaging/job scheduling. Is there a recommended way to handle this kind of problems ?
RabbitMQ has flow control built into the QoS. If RabbitMQ cannot handle the publishing rate it will adjust the TCP window size to slow down the publishers. In the event of too many messages being sent to the server it will also overflow to disk. This will allow your consumer to be a bit more naive although if you restart the connection on error and flood the connection you can cause problems.
I've always decided to spend more time making sure the publishers/consumers could work with multiple queue servers instead of trying to make them more intelligent about a single queue server. The benefit is that if you are really overloading a single server you can just add another one (or another pair if using RabbitMQ HA. There is a useful video from Pycon about Messaging at Scale using Celery and RabbitMQ that should be of use.

ZMQ device queue does not load balance properly

I know that ZMQ offers all of the flexibility to do your own load-balancing. However I would expect the out-of-the-box broker, about 4 lines of code using the line
zmq_device (ZMQ_QUEUE, frontend, backend);
to load balance quite well as the documentation says it does load balance.
ZMQ_QUEUE creates a shared queue that collects requests from a set of clients, and distributes these fairly among a set of services. Requests are fair-queued from frontend connections and load-balanced between backend connections. Replies automatically return to the client that made the original request.
I have an army of back-end services and yet find that often my front-end clients have to wait several seconds for something that takes < 1/10 of a second in a 1:1 setting (there are same # of client and service machines). I suspect that ZMQ is not load-balancing properly out of the box - it's sending too many requests to the same service even though it doesn't have bandwidth, etc.
I think this is partly because the services are multithreaded in a way that lets them take up to 10 concurrent requests yet it slows down greatly at near the 10th request even though it can still accept them. Random distribution would be ideal. Is there an out-of-the-box way to do this or can it be done in a few lines of code, or do I have to write my own broker from scratch?
Fwiw issue was the workers were taking on work when they didn't have room for it, issue was not in ZMQ layer per se.