Tensorflow: how to detect audio direction - tensorflow

I have a task: to determine the sound source location.
I had some experience working with tensorflow, creating predictions on some simple features and datasets. I assume that for this task, there would be necessary to analyze the sound frequences and probably other related data on training and then prediction steps. The sound goes from the headset, so human ear is able to detect the direction.
1) Did somebody already perform that? (unfortunately couldn't find any similar project)
2) What kind of caveats could I meet while trying to achieve that?
3) Am I able to do that using this technology approach? Are there any other sound processing frameworks / technologies / open source projects that could help me ?
I am asking that here, since my research on google, github, stackoverflow didn't show me any relevant results on that specific topic, so any help is highly appreciated!

This is typically done with more traditional DSP with multiple sensors. You might want to look into time difference of arrival(TDOA) and direction of arrival(DOA). Algorithms such as GCC-PHAT and MUSIC will be helpful.
Issues that you might encounter are: DOA accuracy is function of the direct to reverberant ratio of the source, i.e. the more reverberant the environment the harder it is to determine the source location.
Also you might want to consider the number of location dimensions you want to resolve. A point in 3D space is much more difficult than a direction relative to the sensors
Using ML as an approach to this is not entirely without merit but you will have to consider what it is you would be learning, i.e. you probably don't want to learn the test rooms reverberant properties but instead the sensors spatial properties.

Related

training images? Considerations for selection

I'm relatively new and am still learning the basics. I've used NVIDIA DIGITS in the past, and am now looking at Tensorflow. While I've been able to fumble my way around creating some models for a few projects I'm working on, I really want to start diving deeper into what I'm doing, how I'm doing it, and ultimately a better understanding of why.
One area that I would like to start with is the Images that I'm using for training and testing. Can anyone point me to a blog, an article, a paper, or give me some insight in what I need to consider when selecting images to train a new model on. Up until recently, I've been using datasets that have already been selected and that are available for download. Lets say I'm going to start working on a project that involves object detection of ships from a variety of distances and angles.
So my thoughts would be
1) I need a large quantity of images.
2) The images need to contain ships of the different types I would like to detect. (lets just say one class, ships, don't care what type of ships)
3) I also need to have images that have a great variety of distance perspective for the different types of ships.
Ultimately, my thoughts are that the images need to reflect the distance, perspective, and types of ships I would ideally want to identify from the video. Seems simple enough.
However, there are a number of questions
Does the images need to be the same/similar resolution as the camera I'll be using, for best results?
Does the images all need to be the same resolution?
Can I use a single image and just digitally zoom out on the image to give the illusion of different distances?
I'm sure there are a number of other questions that I'm not asking, or should be asking. Are there any guide lines available for creating a solid collection of images to use when creating the collection of images for training and validation?
I recommend thinking through end to end, like would you need to classify ship models as a next step? I recommend going through well known public datasets and actually work with the structure, how to store data, labels, how to handle preprocessing etc.
More importantly, what are you trying to achieve? Talking to experts in the topic does help greatly while preparing your own dataset.
Use open source images if you can, e.g. flickr, google, imagenet.
No, you don't need them to be the same resolution.
It is not ideal to zoom in/out images to use in different categories. Preprocessing images and data augmentation already does this to create more distant representations of the same class. This is why I would recommend hands on approach with an existing dataset first.
Yes, what you need is many, different representations of classes, and a roughly balanced dataset of classes. If you define your data structure well in the beginning, it will save you a ton of time as you won't have to make changes often.

How can i create a 3D modeling app? What resources i will required?

I want to create a application which converts 2d-images/video into a 3d model. While researching on it i found out similar application like Trnio, Scann3D, Qlone,and few others(Though few of them provide poor output 3D model). I also find out about a technology launched by the microsoft research called mobileFusion which showed the same vision i was hoping for my application but these apps were non like that.
Creating a 3D modelling app is complex task, and achieving it to a high standard requires a lot of studying. To point you in the right direction, you most likely want to perform something called Structure-from-Motion(SfM) or Simultaneous Localization and Mapping (SLAM).
If you want to program this yourself OpenCV is a good place to start if you know C++ or Python. A typical pipeline involves; feature extraction and matching, camera pose estimation, triangulation and then optimised using a bundle adjustment. All pipelines for SfM and SLAM follow these general steps (with exceptions of course). All of these steps are possible is OpenCV although Googles Ceres Solver is an excellent open-source bundle adjustment. SfM generally goes onto dense matching which is where you get very dense point clouds which are good for creating meshes. A free open-source pipeline for this is OpenSfM. Another good source for tools is OpenMVG which has all of the tools you need to make a full pipeline.
SLAM is similar to SfM, however, has more of a focus on real-time application and less on absolute accuracy. Applications for this is more centred around robotics where a robot wants to know where it is relative to its environment, but it not so concerned on absolute accuracy. The top SLAM algorithms are ORB-SLAM and LSD-SLAM. Both are open-source and free for you to implement into your own software.
So really it depends what you want... SfM for high accuracy, SLAM for real-time. If you want a good 3D model I would recommend using existing algorithms as they are very good.
The best commercial software in my opinion... Agisoft Photoscan. If you can make anything half as good as this i'd be very impressed. To answer your question what resources will you require. In my opinion, python/c++ skills, the ability to google well and a spare time to read up on photogrammetry and SfM properly.

IPA (International Phonetic Alphabet) Transcription with Tensorflow

I'm looking into designing a software platform that will aid linguists and anthropologists in their study of previously unstudied languages. Statistics show that around 1,000 languages exist that have never been studied by a person outside of their respective speaker groups.
My goal is to utilize TensorFlow to make a platform that will allow linguists to study and document these languages more efficiently, and to help them create written systems for the ones that don't have a written system already. One of their current methods of accomplishing such a task is three-fold: 1) Record a native speaker conversing in the language, 2) Listening to that recording and trying to transcribe it into the IPA, 3) From the phonetics, analyzing the phonemics and phonotactics of the language to eventually create a written system for the speaker.
My proposed platform would cut that research time down from a minimum of a year to a maximum of six months. Before I start, I have some questions...
What would be required to train TensorFlow to transcribe live audio into the IPA? Has this already been done? and if so, how would I utilize a previous solution for this project? Is a project like this even possible with TensorFlow? if not, what would you recommend using instead?
My apologies for the magnitude of this question. I don't have much experience in the realm of machine learning, as I am just beginning the research process for this project. Any help is appreciated!
I guess I will take a first shot at answering this. Since the question is pretty general, my answer will have to be pretty general as well.
What would be required. At the very least you would have to have a large dataset of pre-transcribed data. Ideally a large amount of spoken language audio mapped to characters in the phonetic alphabet, so the system could learn the sound of individual characters rather than whole transcribed words. If such a dataset doesn't exist, a less granular dataset could be used, mapping single words to their transcriptions. Then you would need a model, that is the actual neural network architecture implemented in code. And lastly you would need some computing resources. This is not something you can train casually, you would either have to buy some time in a cloud based machine learning framework (like Google Cloud ML) or build a fairly expensive machine to train at home.
Has this been done? I don't know. I don't think so. There have been published papers reporting various degrees of success at training systems to transcribe speech. Here is one, for example, http://deeplearning.stanford.edu/lexfree/lexfree.pdf It seems that since the alphabet you want to transcribe to is specifically designed to capture the way words sound rather than just write down the words you might have more success at training such a model.
Is it possible with TensorFlow. Yes, most likely. TensorFlow is well suited for implementing most modern deep learning architectures. Unless you end up designing some really weird and very original model for this purpose, TensorFlow should work just fine.
Edit: after some thought in part 1, you would have to use a dataset mapping spoken words to their transcriptions, since I expect that the same sound pronounced separately would be different from when the same sound is used in a word.
This has actually been done, albeit in PyTorch, by a group at CMU: https://github.com/xinjli/allosaurus

Insert skeleton in 3D model programmatically

Background
I'm working on a project where a user gets scanned by a Kinect (v2). The result will be a generated 3D model which is suitable for use in games.
The scanning aspect is going quite well, and I've generated some good user models.
Example:
Note: This is just an early test model. It still needs to be cleaned up, and the stance needs to change to properly read skeletal data.
Problem
The problem I'm currently facing is that I'm unsure how to place skeletal data inside the generated 3D model. I can't seem to find a program that will let me insert the skeleton in the 3D model programmatically. I'd like to do this either via a program that I can control programmatically, or adjust the 3D model file in such a way that skeletal data gets included within the file.
What have I tried
I've been looking around for similar questions on Google and StackOverflow, but they usually refer to either motion capture or skeletal animation. I know Maya has the option to insert skeletons in 3D models, but as far as I could find that is always done by hand. Maybe there is a more technical term for the problem I'm trying to solve, but I don't know it.
I do have a train of thought on how to achieve the skeleton insertion. I imagine it to go like this:
Scan the user and generate a 3D model with Kinect;
1.2. Clean user model, getting rid of any deformations or unnecessary information. Close holes that are left in the clean up process.
Scan user skeletal data using the Kinect.
2.2. Extract the skeleton data.
2.3. Get joint locations and store as xyz-coordinates for 3D space. Store bone length and directions.
Read 3D skeleton data in a program that can create skeletons.
Save the new model with inserted skeleton.
Question
Can anyone recommend (I know, this is perhaps "opinion based") a program to read the skeletal data and insert it in to a 3D model? Is it possible to utilize Maya for this purpose?
Thanks in advance.
Note: I opted to post the question here and not on Graphics Design Stack Exchange (or other Stack Exchange sites) because I feel it's more coding related, and perhaps more useful for people who will search here in the future. Apologies if it's posted on the wrong site.
A tricky part of your question is what you mean by "inserting the skeleton". Typically bone data is very separate from your geometry, and stored in different places in your scene graph (with the bone data being hierarchical in nature).
There are file formats you can export to where you might establish some association between your geometry and skeleton, but that's very format-specific as to how you associate the two together (ex: FBX vs. Collada).
Probably the closest thing to "inserting" or, more appropriately, "attaching" a skeleton to a mesh is skinning. There you compute weight assignments, basically determining how much each bone influences a given vertex in your mesh.
This is a tough part to get right (both programmatically and artistically), and depending on your quality needs, is often a semi-automatic solution at best for the highest quality needs (commercial games, films, etc.) with artists laboring over tweaking the resulting weight assignments and/or skeleton.
There are algorithms that get pretty sophisticated in determining these weight assignments ranging from simple heuristics like just assigning weights based on nearest line distance (very crude, and will often fall apart near tricky areas like the pelvis or shoulder) or ones that actually consider the mesh as a solid volume (using voxels or tetrahedral representations) to try to assign weights. Example: http://blog.wolfire.com/2009/11/volumetric-heat-diffusion-skinning/
However, you might be able to get decent results using an algorithm like delta mush which allows you to get a bit sloppy with weight assignments but still get reasonably smooth deformations.
Now if you want to do this externally, pretty much any 3D animation software will do, including free ones like Blender. However, skinning and character animation in general is something that tends to take quite a bit of artistic skill and a lot of patience, so it's worth noting that it's not quite as easy as it might seem to make characters leap and dance and crouch and run and still look good even when you have a skeleton in advance. That weight association from skeleton to geometry is the toughest part. It's often the result of many hours of artists laboring over the deformations to get them to look right in a wide range of poses.

Does anyone have any idea how to create a 2D skeleton with the Kinect depthmap?

I'm currently using a Processing Kinect library which supplies a depth map. I was wondering how I could take that and use it to create a 2D skeleton, if possible. Not looking for any code here, just a general process I could use to achieve those results.
Also, given that we've seen this in several of the Kinect games so far, would it be difficult to have multiple skeletons running at once?
Disclaimer: the reason why you still didn't get an answer for this question is probably because that's a current research problem. So I can't give you a direct answer but will try to help with some information and useful resources for this topic.
There are mainly 2 different approaches to create a skeleton from a depth map. The first one is to use machine learning, the second is purely algorithmic.
For the machine learning one, you'd need many samples of people doing a predetermined move, and use those samples to train your favorite learning algorithm. That's the approach that was taken and implemented by Microsoft in the XBox (source), it works really well BUT you need millions of samples to make it reliable... quite a drawback.
The "algorithmic" approach (understand without using a training set) can be done in many different ways and is a research problem. It's often based on modeling the possible body postures and trying to match that with the depth image received. That's the approach that was chosen by PrimeSense (the guys behind the kinect depth camera technology) for their skeleton tracking tool NITE.
The OpenKinect community maintains a wiki where they list some interesting research material about this topic. You might also be interested in this thread on the OpenNI mailing list.
If you're looking for an implementation of a skeleton tracking tool, PrimeSense released NITE (closed source), the one they made: it's part of the OpenNI framework. That's what's used in most of the videos you might have seen that involve skeleton tracking. I think it's able to handle up to 2 skeletons at the same time, but that requires confirmation.
The best solution is to use FAAST (http://projects.ict.usc.edu/mxr/faast/) which requires OpenNI. I have struggled to get OpenNI to work on my computer. I have not seen an approach yet using Code Laboratories' CL NUI.
An algorithmic approach is http://code.google.com/p/skeletonization/ but you may have a problem because your depthmap only represents surfaces and no closed objects.