Apache Ignite - Problem with Transactions including 20K objects - ignite

I would like to commit a transaction that included almost 20K objects with Apache Ignite.
I've configured the IgniteCache with a CacheConfiguration in Transactional Mode:
CacheConfiguration<Long, CDonneeAffichage> ccda = new
CacheConfiguration<>(CacheConstant.CST_CACHE_DONNEE_AFFICHAGE);
ccda.setIndexedTypes(Long.class, CDonneeAffichage.class);
ccda.setAtomicityMode(CacheAtomicityMode.TRANSACTIONAL);
The transaction is created with IgniteTransactions:
IgniteTransactions transactions = igniteInstance.transactions();
try (Transaction tx = transactions.txStart()){
//20K put in the Cache
tx.commit();
}
The update takes around 20 seconds and during this time it's possible to retrieve partial data for example after 12 seconds I can see 11k objects of the total.
I really need to be able to have a consistent data:
Before the transaction commit, I should have 0 data return
After the transaction commit, I should have the whole 20K.
Does anybody know if it's possible to do this kind of transactions with Apache Ignite?
Thanks,

Transactions in Ignite satisfy ACID requirements. But some operations are not transactional. There are no transactional operations, that involve all entries in the cache, because it would require locking all keys, which is quite a complex action. No other transactions would be able to perform their work, because all entries would be locked.
So, when you call the IgniteCache#size() method, then transaction is not started, and partial results may be received. Transactions are only isolated from other transactions, and not from operations outsize transactions.
To determine if an API method is transactional or not, you can check a list of exceptions, that it throws. If there is a TransactionException, then it means, that the method supports transactions.
Also SQL is currently non-transactional. Release of transactional SQL in experimental mode is planned for version 2.7, which is about to be released.

Related

In typeorm with replication, am I hitting the master instance whenever I am inside an EntityManager transaction?

I am having some race condition issues with an Aurora PostgreSQL DB hosted on AWS RDS. An example similar to what is happening is:
A Group table has a column userEntranceLimits.
A UserEntrance table has a column userId and a column groupId.
The count of a UserEntrance's distinct users for a specific group may not exceed the group's userEntranceLimits.
Inside a transaction for creating a new UserEntrance, I check if the current count of UserEntrances for that group is >= the limit.
If it is not, I proceed to create a new UserEntrance.
In some rare occasions, a group appears with more UserEntrances than its limit.
I initially thought that the race condition was because of out-of-sync read replicas. However, if I am understanding this part of typeorm's code correctly, the transactions will always execute in master. Is that right? If that's the case, then I suppose the actual solution to the race condition is changing the isolation level of the transaction to something else, e.g. SERIALIZABLE. Is any of this that I'm thinking true?
If you use it in way described in typeorm docs calling directly entityManager.transaction() or #Transaction() decorator and if you use connection, provided by transaction, then YES, transactions are using master.
As I debugged typeorm sources, while starting transaction, entityManager.queryRunner is undefined. So as per EntityManager implementation, queryRunner will be created for each transaction with no replication mode provided, so default (master) will be used.
So problem is more probable in your logic than in transaction configuration.

How to implement check and set or Read - Update ACID transaction in Aerospike

I have a usecase where I have data in Aerospike and now that data required frequent updates, but under a transaction, following ACID. The documentation doesn't clearly show how to achieve it: https://www.aerospike.com/docs/client/go/usage/kvs/write.html#read-modify-write
It should simply require you to set 'EXPECT_GEN_EQUAL' in the write policy, so that the generation of the record is checked prior to applying the write transaction. If the generation doesn't match, you will get an error back and the server will tick the fail_generation stat. The generation is an internal simple counter metadata on a per record basis that gets incremented every time the record is updated.
You of course would need to then first read the record in order to get its current generation.
You aren't describing what your operations are. Are you aware that in Aerospike you can do multiple operations on the same record in a single transaction, all under the same record lock? This is the operate() method in all the language clients. For the Go client, it's documented at https://godoc.org/github.com/aerospike/aerospike-client-go#Client.Operate

Global revision without locking

Given this set of rules, would it be possible to implement this in SQL?
Two transactions that don't modify the same rows should be able to run concurrently. No locks should occur (or at least their use should be minimized as much as possible).
Transactions can only read committed data.
A revision is defined as an integer value in the system.
A new transaction must be able to increment and query a new revision. This revision will be applied to every rows that the transaction modifies.
No 2 transactions can share the same revision.
A transaction X that is committed before transaction Y must have a revision lower than the one assigned to transaction Y.
I want to use integer as the revision in order to optimize how I query all changes since a specific revision. Something like this:
SELECT * FROM [DummyTable] WHERE [DummyTable].[Revision] > clientRevision
My current solution uses an SQL table [GlobalRevision] with a single row [LastRevision] to keep the latest revision. All my transactions' isolation level are set to Snapshot.
The problem with this solution is that the [GlobalRevision] table with the single row [LastRevision] becomes a point of contention. This is because I must increment the revision at the start of a transaction so that I can apply the new revision to the modified rows. This will keep a lock on the [LastRevision] row throughout the duration of the transaction, killing the concurrency. Even though two concurrent transactions modify totally different rows, they cannot be executed concurrently (Rule #1: Failed).
Is there any pattern in SQL to solve this kind of issue? One solution is to use Guids and keep an history of revisions (like git revisions) but this is less easier than just having an integer that we can compare to see if a revision is newer than another one.
UPDATE:
The business case for this is to create a Baas system (Backend as a service) with data synchronization between client and server. Here are some use cases for this kind of system:
Client while online modifies an asset, pushes the update to the server, server updates DB [this is where my question relates to], server sends update notifications to interested clients that synchronize their local data with the new changes.
Client connects to server, client requests a pull to the server, server finds all changes that were applied after client's revision and return them to the client, client applies the changes and sets its new revision.
...
As you can see, the global revision lets me put a revision on every changes committed on the server and from this revision, I can determine what updates need to be sent to the clients depending on their specific revision.
This needs to scale to multiple thousands of users that can push updates in parallel and those changes must be synchronized to other connected users. So the longer it takes to execute a transaction, the longer it takes for other users to receive the change notifications.
I want to avoid as much as possible contention for this reason. I am not an expert in SQL so I just want to make sure there is not something I am missing that would let me do that easily.
Probably the easiest thing for you to try would be to use a SEQUENCE for your revision number, assuming you're at SQL 2012 or newer. This is a lighter-weight way of generating an auto-incrementing value that you can use as a revision ID per your rules. Acquiring them at scale should be far less subject to the contention issues you describe than using a full-fledged table.
You do need to know that you could end up with revision number gaps if a given transaction rolled back, because SEQUENCE values operate outside of transactional scope. From the article:
Sequence numbers are generated outside the scope of the current
transaction. They are consumed whether the transaction using the
sequence number is committed or rolled back.
If you can relax the requirement for an integer revision number and settle for knowing what the data was at a given point in time, you might be able to use Change Data Capture, or, in SQL 2016, Temporal Tables. Both of these technologies allow you to "turn back time" and see what the data looked like at a known timestamp.

Lock issues on large recordset

I have a database table that I use as a queue system, where separate process that talk to each other create and read entries in the table. For example, when a user initiates a search an entry is created, then another process that runs every second or two will pick up that new entry, update the status and then do a search, updating the entry again when the search is complete. This all seems to work well with thousands of searches per hour.
However, I have a master admin screen that lets me view the status of all of these 'jobs' but it runs very slowly. I basically return all entries in the table for the last hour so I can keep an eye on what's going on. I think that I am running into lock issues of some sort. I only need to read each entry, and don't really care if it the data is a little bit out of date. I just use a standard 'Select * from Table' statement so maybe it is waiting for other locks to expire before returning data as the jobs are constantly updating the data.
Would this be handled better by a certain kind of cursor to return each row one at a time, etc? Any other ideas?
Thanks
If you really don't care if the data is a bit out of date... or if you only need the data to be 99.99% accurate, consider using WITH (NOLOCK):
SELECT * FROM Table WITH (NOLOCK);
This will instruct your query to use the READ UNCOMMITTED ISOLATION LEVEL, which has the following behavior:
Specifies that dirty reads are allowed. No shared locks are issued to
prevent other transactions from modifying data read by the current
transaction, and exclusive locks set by other transactions do not
block the current transaction from reading the locked data.
Be aware that NOLOCK may cause some inaccuracies in your data, so it probably isn't a good idea to use it throughout the rest of your system.
You need FROM yourtable WITH (NOLOCK) table hint.
You may also want to look at transaction isolation in your update process, if you aren't already
An alternative to NOLOCK (which can lead to very bad things, such as missed rows or duplicated rows) is to allow read committed snapshot isolation at the database level and then issue your query with:
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

MySQL: Transactions vs Locking Tables

I'm a bit confused with transactions vs locking tables to ensure database integrity and make sure a SELECT and UPDATE remain in sync and no other connection interferes with it. I need to:
SELECT * FROM table WHERE (...) LIMIT 1
if (condition passes) {
// Update row I got from the select
UPDATE table SET column = "value" WHERE (...)
... other logic (including INSERT some data) ...
}
I need to ensure that no other queries will interfere and perform the same SELECT (reading the 'old value' before that connection finishes updating the row.
I know I can default to LOCK TABLES table to just make sure that only 1 connection is doing this at a time, and unlock it when I'm done, but that seems like overkill. Would wrapping that in a transaction do the same thing (ensuring no other connection attempts the same process while another is still processing)? Or would a SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE be better?
Locking tables prevents other DB users from affecting the rows/tables you've locked. But locks, in and of themselves, will NOT ensure that your logic comes out in a consistent state.
Think of a banking system. When you pay a bill online, there's at least two accounts affected by the transaction: Your account, from which the money is taken. And the receiver's account, into which the money is transferred. And the bank's account, into which they'll happily deposit all the service fees charged on the transaction. Given (as everyone knows these days) that banks are extraordinarily stupid, let's say their system works like this:
$balance = "GET BALANCE FROM your ACCOUNT";
if ($balance < $amount_being_paid) {
charge_huge_overdraft_fees();
}
$balance = $balance - $amount_being paid;
UPDATE your ACCOUNT SET BALANCE = $balance;
$balance = "GET BALANCE FROM receiver ACCOUNT"
charge_insane_transaction_fee();
$balance = $balance + $amount_being_paid
UPDATE receiver ACCOUNT SET BALANCE = $balance
Now, with no locks and no transactions, this system is vulnerable to various race conditions, the biggest of which is multiple payments being performed on your account, or the receiver's account in parallel. While your code has your balance retrieved and is doing the huge_overdraft_fees() and whatnot, it's entirely possible that some other payment will be running the same type of code in parallel. They'll be retrieve your balance (say, $100), do their transactions (take out the $20 you're paying, and the $30 they're screwing you over with), and now both code paths have two different balances: $80 and $70. Depending on which ones finishes last, you'll end up with either of those two balances in your account, instead of the $50 you should have ended up with ($100 - $20 - $30). In this case, "bank error in your favor".
Now, let's say you use locks. Your bill payment ($20) hits the pipe first, so it wins and locks your account record. Now you've got exclusive use, and can deduct the $20 from the balance, and write the new balance back in peace... and your account ends up with $80 as is expected. But... uhoh... You try to go update the receiver's account, and it's locked, and locked longer than the code allows, timing out your transaction... We're dealing with stupid banks, so instead of having proper error handling, the code just pulls an exit(), and your $20 vanishes into a puff of electrons. Now you're out $20, and you still owe $20 to the receiver, and your telephone gets repossessed.
So... enter transactions. You start a transaction, you debit your account $20, you try to credit the receiver with $20... and something blows up again. But this time, instead of exit(), the code can just do rollback, and poof, your $20 is magically added back to your account.
In the end, it boils down to this:
Locks keep anyone else from interfering with any database records you're dealing with. Transactions keep any "later" errors from interfering with "earlier" things you've done. Neither alone can guarantee that things work out ok in the end. But together, they do.
in tomorrow's lesson: The Joy of Deadlocks.
I've started to research the same topic for the same reasons as you indicated in your question. I was confused by the answers given in SO due to them being partial answers and not providing the big picture. After I read couple documentation pages from different RDMS providers these are my takes:
TRANSACTIONS
Statements are database commands mainly to read and modify the data in the database. Transactions are scope of single or multiple statement executions. They provide two things:
A mechanism which guaranties that all statements in a transaction are executed correctly or in case of a single error any data modified by those statements will be reverted to its last correct state (i.e. rollback). What this mechanism provides is called atomicity.
A mechanism which guaranties that concurrent read statements can view the data without the occurrence of some or all phenomena described below.
Dirty read: A transaction reads data written by a concurrent
uncommitted transaction.
Nonrepeatable read: A transaction re-reads data it has previously read
and finds that data has been modified by another transaction (that
committed since the initial read).
Phantom read: A transaction re-executes a query returning a set of
rows that satisfy a search condition and finds that the set of rows
satisfying the condition has changed due to another recently-committed
transaction.
Serialization anomaly: The result of successfully committing a group
of transactions is inconsistent with all possible orderings of running
those transactions one at a time.
What this mechanism provides is called isolation and the mechanism which lets the statements to chose which phenomena should not occur in a transaction is called isolation levels.
As an example this is the isolation-level / phenomena table for PostgreSQL:
If any of the described promises is broken by the database system, changes are rolled back and the caller notified about it.
How these mechanisms are implemented to provide these guaranties is described below.
LOCK TYPES
Exclusive Locks: When an exclusive lock acquired over a resource no other exclusive lock can be acquired over that resource. Exclusive locks are always acquired before a modify statement (INSERT, UPDATE or DELETE) and they are released after the transaction is finished. To explicitly acquire exclusive locks before a modify statement you can use hints like FOR UPDATE(PostgreSQL, MySQL) or UPDLOCK (T-SQL).
Shared Locks: Multiple shared locks can be acquired over a resource. However, shared locks and exclusive locks can not be acquired at the same time over a resource. Shared locks might or might not be acquired before a read statement (SELECT, JOIN) based on database implementation of isolation levels.
LOCK RESOURCE RANGES
Row: single row the statements executes on.
Range: a specific range based on the condition given in the statement (SELECT ... WHERE).
Table: whole table. (Mostly used to prevent deadlocks on big statements like batch update.)
As an example the default shared lock behavior of different isolation levels for SQL-Server :
DEADLOCKS
One of the downsides of locking mechanism is deadlocks. A deadlock occurs when a statement enters a waiting state because a requested resource is held by another waiting statement, which in turn is waiting for another resource held by another waiting statement. In such case database system detects the deadlock and terminates one of the transactions. Careless use of locks can increase the chance of deadlocks however they can occur even without human error.
SNAPSHOTS (DATA VERSIONING)
This is a isolation mechanism which provides to a statement a copy of the data taken at a specific time.
Statement beginning: provides data copy to the statement taken at the beginning of the statement execution. It also helps for the rollback mechanism by keeping this data until transaction is finished.
Transaction beginning: provides data copy to the statement taken at the beginning of the transaction.
All of those mechanisms together provide consistency.
When it comes to Optimistic and Pessimistic locks, they are just namings for the classification of approaches to concurrency problem.
Pessimistic concurrency control:
A system of locks prevents users from modifying data in a way that
affects other users. After a user performs an action that causes a
lock to be applied, other users cannot perform actions that would
conflict with the lock until the owner releases it. This is called
pessimistic control because it is mainly used in environments where
there is high contention for data, where the cost of protecting data
with locks is less than the cost of rolling back transactions if
concurrency conflicts occur.
Optimistic concurrency control:
In optimistic concurrency control, users do not lock data when they
read it. When a user updates data, the system checks to see if another
user changed the data after it was read. If another user updated the
data, an error is raised. Typically, the user receiving the error
rolls back the transaction and starts over. This is called optimistic
because it is mainly used in environments where there is low
contention for data, and where the cost of occasionally rolling back a
transaction is lower than the cost of locking data when read.
For example by default PostgreSQL uses snapshots to make sure the read data didn't change and rolls back if it changed which is an optimistic approach. However, SQL-Server use read locks by default to provide these promises.
The implementation details might change according to database system you chose. However, according to database standards they need to provide those stated transaction guarantees in one way or another using these mechanisms. If you want to know more about the topic or about a specific implementation details below are some useful links for you.
SQL-Server - Transaction Locking and Row Versioning Guide
PostgreSQL - Transaction Isolation
PostgreSQL - Explicit Locking
MySQL - Consistent Nonlocking Reads
MySQL - Locking
Understanding Isolation Levels (Video)
You want a SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE inside a transaction, as you said, since normally SELECTs, no matter whether they are in a transaction or not, will not lock a table. Which one you choose would depend on whether you want other transactions to be able to read that row while your transaction is in progress.
http://dev.mysql.com/doc/refman/5.0/en/innodb-locking-reads.html
START TRANSACTION WITH CONSISTENT SNAPSHOT will not do the trick for you, as other transactions can still come along and modify that row. This is mentioned right at the top of the link below.
If other sessions simultaneously
update the same table [...] you may
see the table in a state that never
existed in the database.
http://dev.mysql.com/doc/refman/5.0/en/innodb-consistent-read.html
Transaction concepts and locks are different. However, transaction used locks to help it to follow the ACID principles.
If you want to the table to prevent others to read/write at the same time point while you are read/write, you need a lock to do this.
If you want to make sure the data integrity and consistence, you had better use transactions.
I think mixed concepts of isolation levels in transactions with locks.
Please search isolation levels of transactions, SERIALIZE should be the level you want.
I had a similar problem when attempting a IF NOT EXISTS ... and then performing an INSERT which caused a race condition when multiple threads were updating the same table.
I found the solution to the problem here: How to write INSERT IF NOT EXISTS queries in standard SQL
I realise this does not directly answer your question but the same principle of performing an check and insert as a single statement is very useful; you should be able to modify it to perform your update.
I'd use a
START TRANSACTION WITH CONSISTENT SNAPSHOT;
to begin with, and a
COMMIT;
to end with.
Anything you do in between is isolated from the others users of your database if your storage engine supports transactions (which is InnoDB).
You are confused with lock & transaction. They are two different things in RMDB. Lock prevents concurrent operations while transaction focuses on data isolation. Check out this great article for the clarification and some graceful solution.