tf.fake_quant_with_min_max_vars is a differentiable function? - tensorflow

Quantization schemes are generally non-differentiable because they pass through the threshold, such as round or sign function. It means that we can not get the gradient of trainable variables due to the nature of chain rule.
Instead, we can use a trick called 'straight-through-estimator', which enable us to back-propagating the gradient of individual trainable variables.
One such method is tf.fake_quant_with_min_max_vars, The advantages of this format are that it can represent arbitrary magnitudes of ranges, they don’t have to be symmetrical, it can represent signed and unsigned values, and the linear spread makes doing multiplications straightforward.Blog, Paper.
So, my question is, can we differentiate the fake_quant function? And if so, does this function apply 'straight-through-estimator'?
I did a little bit of this with some snippet code
x = tf.cast(np.random.normal(0,1,(10,10), tf.float32)
x_q = tf.fake_quant_with_min_max_vars(x, min=tf.reduce_min(x), max=tf.reduce_max(x), num_bits=3)
grad = tf.gradients(x_q, x)
In that case, almost every grad have value 1(i.e, gradient 1), which means it pass through the gradient itself.
However, sometimes a few samples have gradient 0, or other constant, such as 2, 3, 4...
Am I missing what's going on?

Related

Should RNN attention weights over variable length sequences be re-normalized to "mask" the effects of zero-padding?

To be clear, I am referring to "self-attention" of the type described in Hierarchical Attention Networks for Document Classification and implemented many places, for example: here. I am not referring to the seq2seq type of attention used in encoder-decoder models (i.e. Bahdanau), although my question might apply to that as well... I am just not as familiar with it.
Self-attention basically just computes a weighted average of RNN hidden states (a generalization of mean-pooling, i.e. un-weighted average). When there are variable length sequences in the same batch, they will typically be zero-padded to the length of the longest sequence in the batch (if using dynamic RNN). When the attention weights are computed for each sequence, the final step is a softmax, so the attention weights sum to 1.
However, in every attention implementation I have seen, there is no care taken to mask out, or otherwise cancel, the effects of the zero-padding on the attention weights. This seems wrong to me, but I fear maybe I am missing something since nobody else seems bothered by this.
For example, consider a sequence of length 2, zero-padded to length 5. Ultimately this leads to the attention weights being computed as the softmax of a similarly 0-padded vector, e.g.:
weights = softmax([0.1, 0.2, 0, 0, 0]) = [0.20, 0.23, 0.19, 0.19, 0.19]
and because exp(0)=1, the zero-padding in effect "waters down" the attention weights. This can be easily fixed, after the softmax operation, by multiplying the weights with a binary mask, i.e.
mask = [1, 1, 0, 0, 0]
and then re-normalizing the weights to sum to 1. Which would result in:
weights = [0.48, 0.52, 0, 0, 0]
When I do this, I almost always see a performance boost (in the accuracy of my models - I am doing document classification/regression). So why does nobody do this?
For a while I considered that maybe all that matters is the relative values of the attention weights (i.e., ratios), since the gradient doesn't pass through the zero-padding anyway. But then why would we use softmax at all, as opposed to just exp(.), if normalization doesn't matter? (plus, that wouldn't explain the performance boost...)
Great question! I believe your concern is valid and zero attention scores for the padded encoder outputs do affect the attention. However, there are few aspects that you have to keep in mind:
There are different score functions, the one in tf-rnn-attention uses simple linear + tanh + linear transformation. But even this score function can learn to output negative scores. If you look at the code and imagine inputs consists of zeros, vector v is not necessarily zero due to bias and the dot product with u_omega can boost it further to low negative numbers (in other words, plain simple NN with a non-linearity can make both positive and negative predictions). Low negative scores don't water down the high scores in softmax.
Due to bucketing technique, the sequences within a bucket usually have roughly the same length, so it's unlikely to have half of the input sequence padded with zeros. Of course, it doesn't fix anything, it just means that in real applications negative effect from the padding is naturally limited.
You mentioned it in the end, but I'd like to stress it too: the final attended output is the weighted sum of encoder outputs, i.e. relative values actually matter. Take your own example and compute the weighted sum in this case:
the first one is 0.2 * o1 + 0.23 * o2 (the rest is zero)
the second one is 0.48 * o1 + 0.52 * o2 (the rest is zero too)
Yes, the magnitude of the second vector is two times bigger and it isn't a critical issue, because it goes then to the linear layer. But relative attention on o2 is just 7% higher, than it would have been with masking.
What this means is that even if the attention weights won't do a good job in learning to ignore zero outputs, the end effect on the output vector is still good enough for the decoder to take the right outputs into account, in this case to concentrate on o2.
Hope this convinces you that re-normalization isn't that critical, though probably will speed-up learning if actually applied.
BERT implementation applies a padding mask for calculating attention score.
Adds 0 to the non-padding attention score and adds -10000 to padding attention scores. the e^-10000 is very small w.r.t to other attention score values.
attention_score = [0.1, 0.2, 0, 0, 0]
mask = [0, 0, -10000, -10000] # -10000 is a large negative value
attention_score += mask
weights = softmax(attention_score)

Keras custom loss function with binary (round) with tensorflow backend

I'm currently trying to implement a custom loss function (precision) with a binary outcome but Tensorflow backend refuses to use round function which is necessary to be used in order to generate a '0' or '1'.
As far as I have investigated, this is because Tensorflow defines the gradient of the round as None and the loss function can't return None.
I have currently implemented this custom loss to create as close as is possible '0' or '1' in R Keras interface.
precision_loss<-function(y_true,y_pred){
y_pred_pos = K$clip(y_pred, 0, 1)
#Custom sigmoid to generate '0' '1'
y_pred_pos = K$maximum(0,K$minimum(1,(y_pred_pos+0.0625)/0.125))
y_pred_neg = 1 - y_pred_pos
y_pos = K$clip(y_true, 0, 1)
#Custom sigmoid to generate '0' '1'
y_pos = K$maximum(0,K$minimum(1,(y_pos+0.0625)/0.125))
y_neg = 1 - y_pos
#Generate confusion matrix counts
tp = K$sum(y_pos*y_pred_pos)
tn = K$sum(y_neg*y_pred_neg)
fp = K$sum(y_neg*y_pred_pos)
fn = K$sum(y_pos*y_pred_neg)
return(1-(tp/(tp+fp+K$epsilon())))
}
Notice the "sigmoid" : K$maximum(0,K$minimum(1,(y_pos+0.0625)/0.125))
What I wanted to implement is a workaround for this one:
precision_loss<-function(y_true, y_pred){
y_pred_pos = K$round(K$clip(y_pred, 0, 1))
y_pred_neg = 1 - y_pred_pos
y_pos = K$round(K$clip(y_true, 0, 1))
y_neg = 1 - y_pos
#Generate confusion matrix counts
tp = K$sum(K$clip(y_pos * y_pred_pos,0,1))
tn = K$sum(K$clip(y_neg * y_pred_neg,0,1))
fp = K$sum(K$clip(y_neg * y_pred_pos,0,1))
fn = K$sum(K$clip(y_pos * y_pred_neg,0,1))
return(1-(tp/(tp+fp+K$epsilon())))
}
Some of you have an alternative implementation without using round to generate binary outcomes in the loss function?
PD: In custom metrics function the round is allowed
In order to build a binary loss function, it wouldn't be enough to just build the custom loss function itself. You would also have to pre-define the gradients.
Your high-dimensional loss function would be zero for some points and one for all others. For all non-continuous points in this space, it would be impossible to analytically compute a gradient (i.e. the concept of a gradient doesn't even exist for such points), so you would have to just define one. And for all the continuous points in this space (e.g. an open set in which all loss values are 1), the gradient would exist, but it would be zero, so you would also have to pre-define the gradient values, otherwise your weights wouldn't move at all.
That means either way you would have to define your own custom "gradient" computation function that replaces Keras' (i.e. TensorFlow's) automatic differentiation engine for that particular node in the graph (the loss function node).
You could certainly achieve this by modifying your local copy of Keras or TensorFlow, but nothing good can come from it.
Also, even if you managed to do this, consider this: If your loss function returns only 0 or 1, that means it can only distinguish between two states: The model's prediction is either 100% correct (0 loss) or it is not 100% correct (1 loss). The magnitude of the gradient would have to be the same for all non-100% cases. Is that a desirable property?
Your quasi-binary sigmoid solution has the same problem: The gradient will be almost zero almost everywhere, and in the few points where it won't be almost zero, it will be almost infinity. If you try to train a model with that loss function, it won't learn anything.
As you noticed a custom loss function need to be based on functions which have their gradients defined (in order to minimise the loss function), which is not necessary for a simple metric. Some functions like “round” and “sign” are difficult to use in loss function since their gradients are either null all the time or infinite which is not helpful for minimisation. That’s probably why their gradients are not defined, by default.
Then, you have two options:
Option 1: you use the round function but you need to add your custom gradient for round, to substitute it in backend.
Option 2: you define another loss function without using round
You chose option 2, which is the best option I think. But your “sigmoid” is very linear, so probably, not a good approximation of your “round” function. You could use an actual sigmoid which is slower due to the use of exponential but you could obtain a similar result with a modified softsign:
max_gradient=100
K$maximum(0,K$minimum(1,0.5*(1+(max_gradient*y_pos)/(1+ max_gradient*abs(y_pos)))))
The max_gradient coefficient can be used to make your edge more sharp, around 0.5. It defines the maximum gradient at 0.5.

taking the gradient in Tensorflow, tf.gradient

I am using this function of tensorflow to get my function jacobian. Came across two problems:
The tensorflow documentation is contradicted to itself in the following two paragraph if I am not mistaken:
gradients() adds ops to the graph to output the partial derivatives of ys with respect to xs. It returns a list of Tensor of length len(xs) where each tensor is the sum(dy/dx) for y in ys.
Blockquote
Blockquote
Returns:
A list of sum(dy/dx) for each x in xs.
Blockquote
According to my test, it is, in fact, return a vector of len(ys) which is the sum(dy/dx) for each x in xs.
I do not understand why they designed it in a way that the return is the sum of the columns(or row, depending on how you define your Jacobian).
How can I really get the Jacobian?
4.In the loss, I need the partial derivative of my function with respect to input (x), but when I am optimizing with respect to the network weights, I define x as a placeholder whose value is fed later, and weights are variable, in this case, can I still define the symbolic derivative of function with respect to input (x)? and put it in the loss? ( which later when we optimize with respect to weights will bring second order derivative of the function.)
I think you are right and there is a typo there, it was probably meant to be "of length len(ys)".
For efficiency. I can't explain exactly the reasoning, but this seems to be a pretty fundamental characteristic of how TensorFlow handles automatic differentiation. See issue #675.
There is no straightforward way to get the Jacobian matrix in TensorFlow. Take a look at this answer and again issue #675. Basically, you need one call to tf.gradients per column/row.
Yes, of course. You can compute whatever gradients you want, there is no real difference between a placeholder and any other operation really. There are a few operations that do not have a gradient because it is not well defined or not implemented (in which case it will generally return 0), but that's all.

Non-Convex Loss Function

I am trying to understand gradient descent algorithm by plotting the error vs value of parameters in the function. What would be an example of a simple function of the form y = f(x) with just just one input variable x and two parameters w1 and w2 such that it has a non-convex loss function ? Is y = w1.tanh(w2.x) an example ? What i am trying to achieve is this :
How does one know if the function has a non-convex loss function without plotting the graph ?
In iterative optimization algorithms such as gradient descent or Gauss-Newton, what matters is whether the function is locally convex. This is correct (on a convex set) if and only if the Hessian matrix (Jacobian of gradient) is positive semi-definite. As for a non-convex function of one variable (see my Edit below), a perfect example is the function you provide. This is because its second derivative, i.e Hessian (which is of size 1*1 here) can be computed as follows:
first_deriv=d(w1*tanh(w2*x))/dx= w1*w2 * sech^2(w2*x)
second_deriv=d(first_deriv)/dx=some_const*sech^2(w2*x)*tanh(w2*x)
The sech^2 part is always positive, so the sign of second_deriv depends on the sign of tanh, which can vary depending on the values you supply as x and w2. Therefore, we can say that it is not convex everywhere.
Edit: It wasn't clear to me what you meant by one input variable and two parameters, so I assumed that w1 and w2 were fixed beforehand, and computed the derivative w.r.t x. But I think that if you want to optimize w1 and w2 (as I suppose it makes more sense if your function is from a toy neural net), then you can compute the 2*2 Hessian in a similar way.
The same way as in high-school algebra: the second derivative tells you the direction of flex. If that's negative in all orientations, then the function is convex.

Tensorflow: What exact formula is applied in `tf.nn.sparse_softmax_cross_entropy_with_logits`?

I tried to manually recompute the outputs of this function so I created a minimal example:
logits = tf.pack(np.array([[[[0,1,2]]]],dtype=np.float32)) # img of shape (1, 1, 1, 3)
labels = tf.pack(np.array([[[1]]],dtype=np.int32)) # gt of shape (1, 1, 1)
softmaxCrossEntropie = tf.nn.sparse_softmax_cross_entropy_with_logits(logits,labels)
softmaxCrossEntropie.eval() # --> output is [1.41]
Now according to my own calculation I only get [1.23]
When manually calculating, I'm simply applying softmax
and cross-entropy:
where q(x) = sigma(x_j) or (1-sigma(x_j)) depending whether j is the correct ground truth class or not and p(x) = labels which are then one-hot-encoded
I'm not sure where the difference might originate from. I cannot really imagine that some epsilon causes such a big difference. Does someone know where I can lookup, which exact formula is used by tensorflow?
Is the source code of that exact part available?
I could only find nn_ops.py, but it only uses another function called gen_nn_ops._sparse_softmax_cross_entropy_with_logits which I couldn't find on github...
Well, usually p(x) in cross-entropy equation is true distribution, while q(x) is the distribution obtained from softmax. So, if p(x) is one-hot (and this is so, otherwise sparse cross-entropy could not be applied), cross entropy is just negative log for probability of true category.
In your example, softmax(logits) is a vector with values [0.09003057, 0.24472847, 0.66524096], so the loss is -log(0.24472847) = 1.4076059 which is exactly what you got as output.