Clustering data points based on row "distance" - google-bigquery

I have a dataset with a number of timestamps. I want to cluster them in groups where each group consists of data points that are not further than X hours apart. That means that each group with be a latest X hours apart.
Any ideas on how to do that?

You'd have to introduce a column by which you can cluster. If I understand you correctly it is about hours in time. Since you need to decide whether a row is in a cluster or not, you can not have a dynamic distance cluster.
But you can extract the hour information and use that to create your cluster.
E.g. using hour - modulo of (hour / group size)
WITH a AS (
SELECT * FROM UNNEST([
TIME(0,40,0), TIME(1,23,0),
TIME(2,12,0), TIME(3,51,0),
TIME(4,1,0), TIME(5,51,0),
TIME(6,5,0), TIME(7,21,0),
TIME(8,56,0), TIME(9,34,0),
TIME(10,23,0),TIME(20,04,0),
TIME(23,43,0)
]) as time
)
SELECT
time,
EXTRACT(HOUR FROM time) one,
EXTRACT(HOUR FROM time)-MOD(EXTRACT(HOUR FROM time),2) two,
EXTRACT(HOUR FROM time)-MOD(EXTRACT(HOUR FROM time),3) three,
EXTRACT(HOUR FROM time)-MOD(EXTRACT(HOUR FROM time),4) four
FROM a
So it's groups of hours of a certain size.

Related

Oracle SQL: How to best go about counting how many values were in time intervals? Database query vs. pandas (or more efficient libraries)?

I currently have to wrap my head around programming the following task.
Situation: suppose we have one column where we have time data (Year-Month-Day Hours-Minutes). Our program shall get the input (weekday, starttime, endtime, timeslot) and we want to return the interval (specified by timeslot) where there are the least values. For further information, the database has several million entries.
So our program would be specified as
def calculate_optimal_window(weekday, starttime, endtime, timeslot):
return optimal_window
Example: suppose we want to input
weekday = Monday, starttime = 10:00, endtime = 12:00, timeslot = 30 minutes.
Here we want to count how many entries there are between 10:00 and 12:00 o'clock, and compute the number of values in every single 30 minute slot (i.e. 10:00 - 10:30, 10:01 - 10:31 etc.) and in the end return the slot with the least values. How would you go about formulating an efficient query?
Since I'm working with an Oracle SQL database, my second question is: would it be more efficient to work with libraries like Dask or Vaex to get the filtering and counting done? Where is the bottleneck in this situation?
Happy to provide more information if the formulation was too blurry.
All the best.
This part:
Since I'm working with an Oracle SQL database, my second question is:
would it be more efficient to work with libraries like Dask or Vaex to
get the filtering and counting done? Where is the bottleneck in this
situation?
Depending on your server's specs and the cluster/machine you have available for Dask, it is rather likely that the bottleneck in your analysis would be the transfer of data between the SQL and Dask workers, even in the (likely) case that this can be efficiently parallelised. From the DB's point of view, selecting data and serialising it is likely at least as expensive as counting in a relatively small number of time bins.
I would start by investigating how long the process takes with SQL alone, and whether this is acceptable, before moving the analysis to Dask. Usual rules would apply: having good indexing and sharding on the time index.
You should at least do the basic filtering and counting in the SQL query. With a simple predicate, Oracle can decide whether to use an index or a partition and potentially reduce the database processing time. And sending fewer rows will significantly decrease the network overhead.
For example:
select trunc(the_time, 'MI') the_minute, count(*) the_count
from test1
where the_time between timestamp '2021-01-25 10:00:00' and timestamp '2021-01-25 11:59:59'
group by trunc(the_time, 'MI')
order by the_minute desc;
(The trickiest part of these queries will probably be off-by-one issues. Do you really want "between 10:00 and 12:00", or do you want "between 10:00 and 11:59:59"?)
Optionally, you can perform the entire calculation in SQL. I would wager the SQL version will be slightly faster, again because of the network overhead. But sending one result row versus 120 aggregate rows probably won't make a noticeable difference unless this query is frequently executed.
At this point, the question veers into the more subjective question about where to put the "business logic". I bet most programmers would prefer your Python solution to my query. But one minor advantage of doing all the work in SQL is keeping all of the weird date logic in one place. If you process the results in multiple steps there are more chances for an off-by-one error.
--Time slots with the smallest number of rows.
--(There will be lots of ties because the data is so boring.)
with dates as
(
--Enter literals or bind variables here:
select
cast(timestamp '2021-01-25 10:00:00' as date) begin_date,
cast(timestamp '2021-01-25 11:59:59' as date) end_date,
30 timeslot
from dual
)
--Choose the rows with the smallest counts.
select begin_time, end_time, total_count
from
(
--Rank the time slots per count.
select begin_time, end_time, total_count,
dense_rank() over (order by total_count) smallest_when_1
from
(
--Counts per timeslot.
select begin_time, end_time, sum(the_count) total_count
from
(
--Counts per minute.
select trunc(the_time, 'MI') the_minute, count(*) the_count
from test1
where the_time between (select begin_date from dates) and (select end_date from dates)
group by trunc(the_time, 'MI')
order by the_minute desc
) counts
join
(
--Time ranges.
select
begin_date + ((level-1)/24/60) begin_time,
begin_date + ((level-1)/24/60) + (timeslot/24/60) end_time
from dates
connect by level <=
(
--The number of different time ranges.
select (end_date - begin_date) * 24 * 60 - timeslot + 1
from dates
)
) time_ranges
on the_minute between begin_time and end_time
group by begin_time, end_time
)
)
where smallest_when_1 = 1
order by begin_time;
You can run a db<>fiddle here.

What is the most efficient way to compute "colocation" in BigQuery?

Assuming that you have a table of the form:
vehicle_id | timestamp | lat | lon
What is the most efficient way to create a query to compute "colocation"?
Colocation means two vehicles at nearly the same location at the same time.
What I am doing is to first create cell_id from a grid (for example created by rounding lat/lon to the 4th decimal digit) and then running a groupby on the cell_id (and time). Is there a more efficient way?
I'd suggest using a GeoHash. Demonstrating this on NYC taxicab data and grouping by hour in time:
WITH top_pickup_locations AS (
SELECT
TIMESTAMP_TRUNC(pickup_datetime, HOUR) AS hour,
ST_GeoHash( ST_GeogPoint(pickup_longitude, pickup_latitude), 15 ) AS geohash,
COUNT(*) AS num_pickups
FROM `bigquery-public-data.new_york.tlc_green_trips_2013`
GROUP BY hour, geohash
ORDER BY num_pickups DESC
LIMIT 10
)
SELECT
hour,
ST_GeogPointFromGeoHash(geohash),
num_pickups
FROM top_pickup_locations
To read more about GeoHash, see here: https://en.wikipedia.org/wiki/Geohash
Increase the number of characters (I'm using 15) to control the precision.
The other alternative is to use ST_SnapToGrid() instead of the geohash:
WITH top_pickup_locations AS (
SELECT
TIMESTAMP_TRUNC(pickup_datetime, HOUR) AS hour,
ST_ASGeoJson(ST_SnapToGrid( ST_GeogPoint(pickup_longitude, pickup_latitude), 0.0001)) AS cellid,
COUNT(*) AS num_pickups
FROM `bigquery-public-data.new_york.tlc_green_trips_2013`
GROUP BY hour, cellid
ORDER BY num_pickups DESC
LIMIT 10
)
SELECT
hour,
ST_GeogFromGeoJson(cellid),
num_pickups
FROM top_pickup_locations
When I did it, the geohash method took 11 seconds of slot time
while the snap-to-grid method took 57 seconds of slot time.
15 characters of geohash and 4 digits of lat-lon are approximately similar in the number of groups.

How to group timestamps into islands (based on arbitrary gap)?

Consider this list of dates as timestamptz:
I grouped the dates by hand using colors: every group is separated from the next by a gap of at least 2 minutes.
I'm trying to measure how much a given user studied, by looking at when they performed an action (the data is when they finished studying a sentence.) e.g.: on the yellow block, I'd consider the user studied in one sitting, from 14:24 till 14:27, or roughly 3 minutes in a row.
I see how I could group these dates with a programming language by going through all of the dates and looking for the gap between two rows.
My question is: how would go about grouping dates in this way with Postgres?
(Looking for 'gaps' on Google or SO brings too many irrelevant results; I think I'm missing the vocabulary for what I'm trying to do here.)
SELECT done, count(*) FILTER (WHERE step) OVER (ORDER BY done) AS grp
FROM (
SELECT done
, lag(done) OVER (ORDER BY done) <= done - interval '2 min' AS step
FROM tbl
) sub
ORDER BY done;
The subquery sub returns step = true if the previous row is at least 2 min away - sorted by the timestamp column done itself in this case.
The outer query adds a rolling count of steps, effectively the group number (grp) - combining the aggregate FILTER clause with another window function.
fiddle
Related:
Query to find all timestamps more than a certain interval apart
How to label groups in postgresql when group belonging depends on the preceding line?
Select longest continuous sequence
Grouping or Window
About the aggregate FILTER clause:
Aggregate columns with additional (distinct) filters
Conditional lead/lag function PostgreSQL?
Building up on Erwin's answer, here is the full query for tallying up the amount of time people spent on those sessions/islands:
My data only shows when people finished reviewing something, not when they started, which means we don't know when a session truly started; and some islands only have one timestamp in them (leading to a 0-duration estimate.) I'm accounting for both by calculating the average review time and adding it to the total duration of islands.
This is likely very idiosyncratic to my use case, but I learned a thing or two in the process, so maybe this will help someone down the line.
-- Returns estimated total study time and average time per review, both in seconds
SELECT (EXTRACT( EPOCH FROM logged) + countofislands * avgreviewtime) as totalstudytime, avgreviewtime -- add total logged time to estimate for first-review-in-island and 1-review islands
FROM
(
SELECT -- get the three key values that will let us calculate total time spent
sum(duration) as logged
, count(island) as countofislands
, EXTRACT( EPOCH FROM sum(duration) FILTER (WHERE duration != '00:00:00'::interval) )/( sum(reviews) FILTER (WHERE duration != '00:00:00'::interval) - count(reviews) FILTER (WHERE duration != '00:00:00'::interval)) as avgreviewtime
FROM
(
SELECT island, age( max(done), min(done) ) as duration, count(island) as reviews -- calculate the duration of islands
FROM
(
SELECT done, count(*) FILTER (WHERE step) OVER (ORDER BY done) AS island -- give a unique number to each island
FROM (
SELECT -- detect the beginning of islands
done,
(
lag(done) OVER (ORDER BY done) <= done - interval '2 min'
) AS step
FROM review
WHERE clicker_id = 71 AND "done" > '2015-05-13' AND "done" < '2015-05-13 15:00:00' -- keep the queries small and fast for now
) sub
ORDER BY done
) grouped
GROUP BY island
) sessions
) summary

Resample on time series data

I have a table with time series column in the millisecond, I want to resample the time series and apply mean on the group. How can I implement it in Postgres?
"Resample" means aggregate all time stamps within one second or one minute. All rows within one second or one minute form a group.
table structure
date x y z
Use date_trunc() to truncate timestamps to a given unit of time, and GROUP BY that expression:
SELECT date_trunc('minute', date) AS date_truncated_to_minute
, avg(x) AS avg_x
, avg(y) AS avg_y
, avg(z) AS avg_z
FROM tbl
GROUP BY 1;
Assuming your misleadingly named date column is actually of type timestamp or timestamptz.
Related answer with more details and links:
PostgreSQL: running count of rows for a query 'by minute'

Postgres SQL select a range of records spaced out by a given interval

I am trying to determine if it is possible, using only sql for postgres, to select a range of time ordered records at a given interval.
Lets say I have 60 records, one record for each minute in a given hour. I want to select records at 5 minute intervals for that hour. The resulting rows should be 12 records each one 5 minutes apart.
This is currently accomplished by selecting the full range of records and then looping thru the results and pulling out the records at the given interval. I am trying to see if I can do this purly in sql as our db is large and we may be dealing with tens of thousands of records.
Any thoughts?
Yes you can. Its really easy once you get the hang of it. I think its one of jewels of SQL and its especially easy in PostgreSQL because of its excellent temporal support. Often, complex functions can turn into very simple queries in SQL that can scale and be indexed properly.
This uses generate_series to draw up sample time stamps that are spaced 1 minute apart. The outer query then extracts the minute and uses modulo to find the values that are 5 minutes apart.
select
ts,
extract(minute from ts)::integer as minute
from
( -- generate some time stamps - one minute apart
select
current_time + (n || ' minute')::interval as ts
from generate_series(1, 30) as n
) as timestamps
-- extract the minute check if its on a 5 minute interval
where extract(minute from ts)::integer % 5 = 0
-- only pick this hour
and extract(hour from ts) = extract(hour from current_time)
;
ts | minute
--------------------+--------
19:40:53.508836-07 | 40
19:45:53.508836-07 | 45
19:50:53.508836-07 | 50
19:55:53.508836-07 | 55
Notice how you could add an computed index on the where clause (where the value of the expression would make up the index) could lead to major speed improvements. Maybe not very selective in this case, but good to be aware of.
I wrote a reservation system once in PostgreSQL (which had lots of temporal logic where date intervals could not overlap) and never had to resort to iterative methods.
http://www.amazon.com/SQL-Design-Patterns-Programming-Focus/dp/0977671542 is an excellent book that goes has lots of interval examples. Hard to find in book stores now but well worth it.
Extract the minutes, convert to int4, and see, if the remainder from dividing by 5 is 0:
select *
from TABLE
where int4 (date_part ('minute', COLUMN)) % 5 = 0;
If the intervals are not time based, and you just want every 5th row; or
If the times are regular and you always have one record per minute
The below gives you one record per every 5
select *
from
(
select *, row_number() over (order by timecolumn) as rown
from tbl
) X
where mod(rown, 5) = 1
If your time records are not regular, then you need to generate a time series (given in another answer) and left join that into your table, group by the time column (from the series) and pick the MAX time from your table that is less than the time column.
Pseudo
select thetimeinterval, max(timecolumn)
from ( < the time series subquery > ) X
left join tbl on tbl.timecolumn <= thetimeinterval
group by thetimeinterval
And further join it back to the table for the full record (assuming unique times)
select t.* from
tbl inner join
(
select thetimeinterval, max(timecolumn) timecolumn
from ( < the time series subquery > ) X
left join tbl on tbl.timecolumn <= thetimeinterval
group by thetimeinterval
) y on tbl.timecolumn = y.timecolumn
How about this:
select min(ts), extract(minute from ts)::integer / 5
as bucket group by bucket order by bucket;
This has the advantage of doing the right thing if you have two readings for the same minute, or your readings skip a minute. Instead of using min even better would be to use one of the the first() aggregate functions-- code for which you can find here:
http://wiki.postgresql.org/wiki/First_%28aggregate%29
This assumes that your five minute intervals are "on the fives", so to speak. That is, that you want 07:00, 07:05, 07:10, not 07:02, 07:07, 07:12. It also assumes you don't have two rows within the same minute, which might not be a safe assumption.
select your_timestamp
from your_table
where cast(extract(minute from your_timestamp) as integer) in (0,5);
If you might have two rows with timestamps within the same minute, like
2011-01-01 07:00:02
2011-01-01 07:00:59
then this version is safer.
select min(your_timestamp)
from your_table
group by (cast(extract(minute from your_timestamp) as integer) / 5)
Wrap either of those in a view, and you can join it to your base table.