"Cross-tree" inter-container communication between encapsulated objects - oop

Encapsulation lends itself to hierarchical "silos" or "trees" of objects, with a given application's major functionalities decomposed into core trunks, each further decomposed into sub-functionalities instantiated as sub-branch member objects of their respective branches.
As an example, suppose I'm programming a GUI in QT. To separate GUI elements from business logic, for every widget I have a class for the GUI elements, a class for the business logic associated with the GUI elements, and what I'll call a controller which serves as a container for both and exists primarily to pass signals/slots in between. I understand this pattern to be called dependency injection.
Let's suppose our application has 2 windows A and B.
Window A contains 2 independent widgets that have separate business functions i and ii, so we might have the structure A::i and A::ii, where :: is "contains an instance of" and not "extends".
Then i and ii both contain gui and business logic units, so we have A::i::business and A::i::gui.
Now, suppose A::i::business and A::ii::business want to pass information between each other, or engage in bidirectional communication with the model-view for my database, identified as MV. Generally speaking, what are my options for doing this?
What I've thought of so far:
1) Pass signals up and down the tree, i.e., the Verilog solution. This seems the most strictly object oriented, but most tedious.
2) Have a flatter architecture to ease the implementation of solution 1). This hurts encapsulation.
3) Make A::i::business and A::ii::business public all the way down, and have either the other object or a third-party shared class access A::i::business or A::ii:business directly. This hurts encapsulation.
4) Have a relatively unencapsulated object, like the database MV or some other form of "shared storage", exist in a public form near the top level of the program with few/ no super-containers. This seems most appealing, as the relatively encapsulated objects can stay encapsulated and communicate through unidirectional reading/ writing to something that's unencapsulated. However, if I want other objects to perform actions based on changes shared storage, some way of notifying the dependent objects while keeping them private is necessary. This might be called the "multi-threading inspired" or "multi-processing inspired" model of communication.
And any other suggestions you all may have.
I've read this post here, but at my level of understanding, the solutions in the accepted answer such as controller, listener and pub-sub, refer to general design patterns that don't seem to commit to a solution for the concrete problem of how to route signals and make decisions about public/ private accessibility of member classes. It may be the case that these solutions have associated conventions for where the communication objects go and how they access the different variables in either silo that I'm not familiar with.
Most generally speaking, I seem to be running into a general problem of communication across container-trees in well-encapsulated programming.
For future reference, is there a general term for this problem to aide future searching? Is my architectural approach of having the object-container structure directly reflecting the tree-decomposition of application functionality lending itself to too hierarchical a design, and would a different pattern of object containment and cross-branch communication be more optimal?

Related

Difference between Pure fabrication and Indirection

I was trying to find tutorials and good examples which would explain difference between those two, but not able to find any information.
Pure fabrication and indirection acts to create and assign responsibilities to intermediate object, so could anyone explain what is difference between those design patterns?
Thanks!
You use Indirection if you want to create a lower coupling between components. The example Larman suggests in Applying UML and Patterns is a class TaxCalculatorAdapter. In order to shield clients from having to know inner workings of a possible adapter, he hides them with an indirection, only exposing the required API. This Indirection will be highly coupled to the adaptees, but only loosely coupled to the clients.
The PersistentStorage from Pure Fabrication is indeed an Indirecton (Larman states so in the book) in that it provides lower coupling. Pure Fabrication goes beyond that though in that it creates objects that are not part of your Domain Model.
The example Larman gives is a domain class Sale. Since Sale has all the data to save, it would be a candidate to hold the logic for saving a Sale as well (Information Expert). However, persistence logic is not related to the concept of a Sale, hence the class would become incohesive. Also, by coupling the Sale to a particular DB API, you limit reuse (Indirection to the rescue). And because saving is a general activity, you would likely also duplicate code in objects which also need to be saved. To avoid this, you make something up (the pure fabrication), meaning you create something that is not part of the Domain model (here: a PersistentStorage), but still captures an essential activity in your application.
As such, Pure Fabrication it is a specialization or rather a variant of Indirection.
Pure fabrication and indirection both are principles from GRASP.
Following examples in this dzone article might clear your concept about pure fabrication and indirection.
Pure Fabrication:
We know the domain model for a banking system contains classes like Account, Branch, Cash, Check, Transaction, etc. The domain classes need to store information about the customers. In order to do that one option is to delegate data storage responsibility to domain classes. This option will reduce the cohesiveness of the domain classes (more than one responsibility). Ultimately, this option violates the SRP principle.
Another option is to introduce another class which does not represent any domain concept. In the banking example, we can introduce a class called, PersistenceProvider. This class does not represent any domain entity. The purpose of this class is to handle data storage functions. Therefore PersistenceProvider is a pure fabrication.
Indirection:
This principle answers one question: How do you cause objects to interact in a manner that makes bond among them remain weak?
The solution is: Give the responsibility of interaction to an intermediate object so that the coupling among different components remains low.
For example, a software application works with different configurations and options. To decouple the domain code from the configuration a specific class is added - which shown in the following listing:
Public Configuration{
public int GetFrameLength(){
// implementation
}
public string GetNextFileName(){
}
// Remaining configuration methods
}
In this way, if any domain object wants to read a certain configuration setting it will ask the Configuration class object. Therefore, the main code is decoupled from the configuration code.
If you have read the Pure Fabrication Principle, this Configuration class is an example of pure fabrication. But the purpose of indirection is to create de-coupling. On the other hand, the purpose of pure fabrication is to keep the domain model clean and represent only domain concepts and responsibilities.
Many software design patterns like Adapter, Facade, and Observer are specializations of the Indirection Principle.
Pure fabrication class is a type of class ,which does not concept in a problem domain designed ,This class is assigned with high cohesion ^,low coupling & reuse.
Indirection
It solves the problem of assigning the responsibility of avoiding direct coupling between things.it also ensures low coupling between the objects & maintains higher reside capabilities.

OOP and Design Practices: Accessing functionality of member objects?

I've been working on a small project using C++ (although this question might be considered language-agnostic) and I'm trying to write my program so that it is as efficient and encapsulated as possible. I'm a self-taught and inexperienced programmer but I'm trying to teach myself good habits when it comes to using interfaces and OOP practices. I'm mainly interested in the typical 'best' practices when it comes to accessing the methods of an object that is acting as a subsystem for another class.
First, let me explain what I mean:
An instance of ClassGame wants to render out a 2d sprite image using the private ClassRenderer subsystem of ClassEngine. ClassGame only has access to the interface of ClassEngine, and ClassRenderer is supposed to be a subsystem of ClassEngine (behind a layer of abstraction).
My question is based on the way that the ClassGame object can indirectly make use of ClassRenderer's functionality while still remaining fast and behind a layer of abstraction. From what I've seen in lessons and other people's code examples, there seems to be two basic ways of doing this:
The first method that I learned via a series of online lectures on OOP design was to have one class delegate tasks to it's private member objects internally. [ In this example, ClassGame would call a method that belongs to ClassEngine, and ClassEngine would 'secretly' pass that request on to it's ClassRenderer subsystem by calling one of its methods. ] Kind of a 'daisy chain' of function calls. This makes sense to me, but it seems like it may be slower than some alternative options.
Another way that I've seen in other people's code is have an accessor method that returns a reference or pointer to the location of a particular subsystem. [ So, ClassGame would call a simple method in ClassEngine that would return a reference/pointer to the object that makes up its ClassRenderer subsystem ]. This route seems convenient to me, but it also seems to eliminate the point of having a private member act as a sub-component of a bigger class. Of course, this also means writing much fewer 'mindless' functions that simply pass a particular task on, due to the fact that you can simply write one getter function for each independent subsystem.
Considering the various important aspects of OO design (abstraction, encapsulation, modularity, usability, extensibility, etc.) while also considering speed and performance, is it better to use the first or the second type of method for delegating tasks to a sub-component?
The book Design Patterns Explained discusses a very similar problem in its chapter about the Bridge Pattern. Apparently this chapter is freely available online.
I would recommend you to read it :)
I think your type-1 approach resembles the OOP bridge pattern the most.
Type-2, returning handles to internal data is something that should generally be avoided.
There are many ways to do what you want, and it really depends on the context (for example, how big the project is, how much you expect to reuse from it in other projects etc.)
You have three classes: Game, Engine and Renderer. Both of your solutions make the Game commit to the Engine's interface. The second solution also makes the Game commit to the Renderer's interface. Clearly, the more interfaces you use, the more you have to change if the interfaces change.
How about a third option: The Game knows what it needs in terms of rendering, so you can create an abstract class that describes those requirements. That would be the only interface that the Game commits to. Let's call this interface AbstractGameRenderer.
To tie this into the rest of the system, again there are many ways. One option would be:
1. Implement this abstract interface using your existing Renderer class. So we have a class GameRenderer that uses Renderer and implements the AbstractGameRenderer interface.
2. The Engine creates both the Game object and the GameRenderer object.
3. The Engine passes the GameRenderer object to the Game object (using a pointer to AbstractGameRenderer).
The result: The Game can use a renderer that does what it wants. It doesn't know where it comes from, how it renders, who owns it - nothing. The GameRenderer is a specific implementation, but other implementations (using other renderers) could be written later. The Engine "knows everything" (but that may be acceptable).
Later, you want to take your Game's logic and use it as a mini-game in another game. All you need to do is create the appropriate GameRenderer (implementing AbstractGameRenderer) and pass it to the Game object. The Game object does not care that it's a different game, a different Engine and a different Renderer - it doesn't even know.
The point is that there are many solutions to design problems. This suggestion may not be appropriate or acceptable, or maybe it's exactly what you need. The principles I try to follow are:
1. Try not to commit to interfaces you can't control (you'll have to change if they change)
2. Try to prevent now the pain that will come later
In my example, the assumption is that it's less painful to change GameRenderer if Renderer changes, than it is to change a large component such as Game. But it's better to stick to principles (and minimise pain) rather than follow patterns blindly.

Should every single object have an interface and all objects loosely coupled?

From what I have read best practice is to have classes based on an interface and loosely couple the objects, in order to help code re-use and unit test.
Is this correct and is it a rule that should always be followed?
The reason I ask is I have recently worked on a system with 100’s of very different objects. A few shared common interfaces but most do not and wonder if it should have had an interface mirroring every property and function in those classes?
I am using C# and dot net 2.0 however I believe this question would fit many languages.
It's useful for objects which really provide a service - authentication, storage etc. For simple types which don't have any further dependencies, and where there are never going to be any alternative implementations, I think it's okay to use the concrete types.
If you go overboard with this kind of thing, you end up spending a lot of time mocking/stubbing everything in the world - which can often end up creating brittle tests.
Not really. Service components (class that do things for your application) are a good fit for interfaces, but as a rule I wouldn't bother having interfaces for, say, basic entity classes.
For example:
If you're working on a domain model, then that model shouldn't be interfaces. However if that domain model wants to call service classes (like data access, operating system functions etc) then you should be looking at interfaces for those components. This reduces coupling between the classes and means it's the interface, or "contract" that is coupled.
In this situation you then start to find it much easier to write unit tests (because you can have stubs/mocks/fakes for database access etc) and can use IoC to swap components without recompiling your applications.
I'd only use interfaces where that level of abstraction was required - i.e. you need to use polymorphic behaviour. Common examples would be dependency injection or where you have a factory-type scenario going on somewhere, or you need to establish a "multiple inheritance" type behaviour.
In my case, with my development style, this is quite often (I favour aggregation over deep inheritance hierarchies for most things other than UI controls), but I have seen perfectly fine apps that use very little. It all depends...
Oh yes, and if you do go heavily into interfaces - beware web services. If you need to expose your object methods via a web service they can't really return or take interface types, only concrete types (unless you are going to hand-write all your own serialization/deserialization). Yes, that has bitten me big time...
A downside to interface is that they can't be versioned. Once you shipped the interface you won't be making changes to it. If you use abstract classes then you can easily extend the contract over time by adding new methods and flagging them as virtual.
As an example, all stream objects in .NET derive from System.IO.Stream which is an abstract class. This makes it easy for Microsoft to add new features. In version 2 of the frameworkj they added the ReadTimeout and WriteTimeout properties without breaking any code. If they used an interface(say IStream) then they wouldn't have been able to do this. Instead they'd have had to create a new interface to define the timeout methods and we'd have to write code to conditionally cast to this interface if we wanted to use the functionality.
Interfaces should be used when you want to clearly define the interaction between two different sections of your software. Especially when it is possible that you want to rip out either end of the connection and replace it with something else.
For example in my CAM application I have a CuttingPath connected to a Collection of Points. It makes no sense to have a IPointList interface as CuttingPaths are always going to be comprised of Points in my application.
However I uses the interface IMotionController to communicate with the machine because we support many different types of cutting machine each with their own commend set and method of communications. So in that case it makes sense to put it behind a interface as one installation may be using a different machine than another.
Our applications has been maintain since the mid 80s and went to a object oriented design in late 90s. I have found that what could change greatly exceeded what I originally thought and the use of interfaces has grown. For example it used to be that our DrawingPath was comprised of points. But now it is comprised of entities (splines, arcs, ec) So it is pointed to a EntityList that is a collection of Object implementing IEntity interface.
But that change was propelled by the realization that a DrawingPath could be drawn using many different methods. Once that it was realized that a variety of drawing methods was needed then the need for a interface as opposed to a fixed relationship to a Entity Object was indicated.
Note that in our system DrawingPaths are rendered down to a low level cutting path which are always series of point segments.
I tried to take the advice of 'code to an interface' literally on a recent project. The end result was essentially duplication of the public interface (small i) of each class precisely once in an Interface (big I) implementation. This is pretty pointless in practice.
A better strategy I feel is to confine your interface implementations to verbs:
Print()
Draw()
Save()
Serialize()
Update()
...etc etc. This means that classes whose primary role is to store data - and if your code is well-designed they would usually only do that - don't want or need interface implementations. Anywhere you might want runtime-configurable behaviour, for example a variety of different graph styles representing the same data.
It's better still when the thing asking for the work really doesn't want to know how the work is done. This means you can give it a macguffin that it can simply trust will do whatever its public interface says it does, and let the component in question simply choose when to do the work.
I agree with kpollock. Interfaces are used to get a common ground for objects. The fact that they can be used in IOC containers and other purposes is an added feature.
Let's say you have several types of customer classes that vary slightly but have common properties. In this case it is great to have a ICustomer interface to bound them together, logicaly. By doing that you could create a CustomerHander class/method that handels ICustomer objects the same way instead of creating a handerl method for each variation of customers.
This is the strength of interfaces.
If you only have a single class that implements an interface, then the interface isn't to much help, it just sits there and does nothing.

Should entities have behavior or not?

Should entities have behavior? or not?
Why or why not?
If not, does that violate Encapsulation?
If your entities do not have behavior, then you are not writing object-oriented code. If everything is done with getters and setters and no other behavior, you're writing procedural code.
A lot of shops say they're practicing SOA when they keep their entities dumb. Their justification is that the data structure rarely changes, but the business logic does. This is a fallacy. There are plenty of patterns to deal with this problem, and they don't involve reducing everything to bags of getters and setters.
Entities should not have behavior. They represent data and data itself is passive.
I am currently working on a legacy project that has included behavior in entities and it is a nightmare, code that no one wants to touch.
You can read more on my blog post: Object-Oriented Anti-Pattern - Data Objects with Behavior .
[Preview] Object-Oriented Anti-Pattern - Data Objects with Behavior:
Attributes and Behavior
Objects are made up of attributes and behavior but Data Objects by definition represent only data and hence can have only attributes. Books, Movies, Files, even IO Streams do not have behavior. A book has a title but it does not know how to read. A movie has actors but it does not know how to play. A file has content but it does not know how to delete. A stream has content but it does not know how to open/close or stop. These are all examples of Data Objects that have attributes but do not have behavior. As such, they should be treated as dumb data objects and we as software engineers should not force behavior upon them.
Passing Around Data Instead of Behavior
Data Objects are moved around through different execution environments but behavior should be encapsulated and is usually pertinent only to one environment. In any application data is passed around, parsed, manipulated, persisted, retrieved, serialized, deserialized, and so on. An entity for example usually passes from the hibernate layer, to the service layer, to the frontend layer, and back again. In a distributed system it might pass through several pipes, queues, caches and end up in a new execution context. Attributes can apply to all three layers, but particular behavior such as save, parse, serialize only make sense in individual layers. Therefore, adding behavior to data objects violates encapsulation, modularization and even security principles.
Code written like this:
book.Write();
book.Print();
book.Publish();
book.Buy();
book.Open();
book.Read();
book.Highlight();
book.Bookmark();
book.GetRelatedBooks();
can be refactored like so:
Book book = author.WriteBook();
printer.Print(book);
publisher.Publish(book);
customer.Buy(book);
reader = new BookReader();
reader.Open(Book);
reader.Read();
reader.Highlight();
reader.Bookmark();
librarian.GetRelatedBooks(book);
What a difference natural object-oriented modeling can make! We went from a single monstrous Book class to six separate classes, each of them responsible for their own individual behavior.
This makes the code:
easier to read and understand because it is more natural
easier to update because the functionality is contained in smaller encapsulated classes
more flexible because we can easily substitute one or more of the six individual classes with overridden versions.
easier to test because the functionality is separated, and easier to mock
It depends on what kind of entity they are -- but the term "entity" implies, to me at least, business entities, in which case they should have behavior.
A "Business Entity" is a modeling of a real world object, and it should encapsulate all of the business logic (behavior) and properties/data that the object representation has in the context of your software.
If you're strictly following MVC, your model (entities) won't have any inherent behavior. I do however include whatever helper methods allow the easiest management of the entities persistence, including methods that help with maintaining its relationship to other entities.
If you plan on exposing your entities to the world, you're better off (generally) keeping behavior off of the entity. If you want to centralize your business operations (i.e. ValidateVendorOrder) you wouldn't want the Order to have an IsValid() method that runs some logic to validate itself. You don't want that code running on a client (what if they fudge it. i.e. akin to not providing any client UI to set the price on an item being placed in a shopping cart, but posting a a bogus price on the URL. If you don't have server-side validation, that's not good! And duplicating that validation is...redundant...DRY (Don't Repeat Yourself).
Another example of when having behaviors on an entity just doesn't work is the notion of lazy loading. Alot of ORMs today will allow you to lazy load data when a property is accessed on an entities. If you're building a 3-tier app, this just doesn't work as your client will ultimately inadvertantly try to make database calls when accessing properties.
These are my off-the-top-of-my-head arguments for keeping behavior off of entities.

Dealing with "global" data structures in an object-oriented world

This is a question with many answers - I am interested in knowing what others consider to be "best practice".
Consider the following situation: you have an object-oriented program that contains one or more data structures that are needed by many different classes. How do you make these data structures accessible?
You can explicitly pass references around, for example, in the constructors. This is the "proper" solution, but it means duplicating parameters and instance variables all over the program. This makes changes or additions to the global data difficult.
You can put all of the data structures inside of a single object, and pass around references to this object. This can either be an object created just for this purpose, or it could be the "main" object of your program. This simplifies the problems of (1), but the data structures may or may not have anything to do with one another, and collecting them together in a single object is pretty arbitrary.
You can make the data structures "static". This lets you reference them directly from other classes, without having to pass around references. This entirely avoids the disadvantages of (1), but is clearly not OO. This also means that there can only ever be a single instance of the program.
When there are a lot of data structures, all required by a lot of classes, I tend to use (2). This is a compromise between OO-purity and practicality. What do other folks do? (For what it's worth, I mostly come from the Java world, but this discussion is applicable to any OO language.)
Global data isn't as bad as many OO purists claim!
After all, when implementing OO classes you've usually using an API to your OS. What the heck is this if it isn't a huge pile of global data and services!
If you use some global stuff in your program, you're merely extending this huge environment your class implementation can already see of the OS with a bit of data that is domain specific to your app.
Passing pointers/references everywhere is often taught in OO courses and books, academically it sounds nice. Pragmatically, it is often the thing to do, but it is misguided to follow this rule blindly and absolutely. For a decent sized program, you can end up with a pile of references being passed all over the place and it can result in completely unnecessary drudgery work.
Globally accessible services/data providers (abstracted away behind a nice interface obviously) are pretty much a must in a decent sized app.
I must really really discourage you from using option 3 - making the data static. I've worked on several projects where the early developers made some core data static, only to later realise they did need to run two copies of the program - and incurred a huge amount of work making the data non-static and carefully putting in references into everything.
So in my experience, if you do 3), you will eventually end up doing 1) at twice the cost.
Go for 1, and be fine-grained about what data structures you reference from each object. Don't use "context objects", just pass in precisely the data needed. Yes, it makes the code more complicated, but on the plus side, it makes it clearer - the fact that a FwurzleDigestionListener is holding a reference to both a Fwurzle and a DigestionTract immediately gives the reader an idea about its purpose.
And by definition, if the data format changes, so will the classes that operate on it, so you have to change them anyway.
You might want to think about altering the requirement that lots of objects need to know about the same data structures. One reason there does not seem to be a clean OO way of sharing data is that sharing data is not very object-oriented.
You will need to look at the specifics of your application but the general idea is to have one object responsible for the shared data which provides services to the other objects based on the data encapsulated in it. However these services should not involve giving other objects the data structures - merely giving other objects the pieces of information they need to meet their responsibilites and performing mutations on the data structures internally.
I tend to use 3) and be very careful about the synchronisation and locking across threads. I agree it is less OO, but then you confess to having global data, which is very un-OO in the first place.
Don't get too hung up on whether you are sticking purely to one programming methodology or another, find a solution which fits your problem. I think there are perfectly valid contexts for singletons (Logging for instance).
I use a combination of having one global object and passing interfaces in via constructors.
From the one main global object (usually named after what your program is called or does) you can start up other globals (maybe that have their own threads). This lets you control the setting up of program objects in the main objects constructor and tearing them down again in the right order when the application stops in this main objects destructor. Using static classes directly makes it tricky to initialize/uninitialize any resources these classes use in a controlled manner. This main global object also has properties for getting at the interfaces of different sub-systems of your application that various objects may want to get hold of to do their work.
I also pass references to relevant data-structures into constructors of some objects where I feel it is useful to isolate those objects from the rest of the world within the program when they only need to be concerned with a small part of it.
Whether an object grabs the global object and navigates its properties to get the interfaces it wants or gets passed the interfaces it uses via its constructor is a matter of taste and intuition. Any object you're implementing that you think might be reused in some other project should definately be passed data structures it should use via its constructor. Objects that grab the global object should be more to do with the infrastructure of your application.
Objects that receive interfaces they use via the constructor are probably easier to unit-test because you can feed them a mock interface, and tickle their methods to make sure they return the right arguments or interact with mock interfaces correctly. To test objects that access the main global object, you have to mock up the main global object so that when they request interfaces (I often call these services) from it they get appropriate mock objects and can be tested against them.
I prefer using the singleton pattern as described in the GoF book for these situations. A singleton is not the same as either of the three options described in the question. The constructor is private (or protected) so that it cannot be used just anywhere. You use a get() function (or whatever you prefer to call it) to obtain an instance. However, the architecture of the singleton class guarantees that each call to get() returns the same instance.
We should take care not to confuse Object Oriented Design with Object Oriented Implementation. Al too often, the term OO Design is used to judge an implementation, just as, imho, it is here.
Design
If in your design you see a lot of objects having a reference to exactly the same object, that means a lot of arrows. The designer should feel an itch here. He should verify whether this object is just commonly used, or if it is really a utility (e.g. a COM factory, a registry of some kind, ...).
From the project's requirements, he can see if it really needs to be a singleton (e.g. 'The Internet'), or if the object is shared because it's too general or too expensive or whatsoever.
Implementation
When you are asked to implement an OO Design in an OO language, you face a lot of decisions, like the one you mentioned: how should I implement all the arrows to the oft used object in the design?
That's the point where questions are addressed about 'static member', 'global variable' , 'god class' and 'a-lot-of-function-arguments'.
The Design phase should have clarified if the object needs to be a singleton or not. The implementation phase will decide on how this singleness will be represented in the program.
Option 3) while not purist OO, tends to be the most reasonable solution. But I would not make your class a singleton; and use some other object as a static 'dictionary' to manage those shared resources.
I don't like any of your proposed solutions:
You are passing around a bunch of "context" objects - the things that use them don't specify what fields or pieces of data they are really interested in
See here for a description of the God Object pattern. This is the worst of all worlds
Simply do not ever use Singleton objects for anything. You seem to have identified a few of the potential problems yourself