The situation
I am using VAD (Voice Activity Detection) from WebRTC by using WebRTC-VAD, a Python adapter. The example implementation from the GitHub repo uses Python's wave module to read PCM data from files. Note that according to the comments the module only works with mono audio and a sampling rate of either 8000, 16000 or 32000 Hz.
What I want to do
Read audio data from arbitrary audio files (MP3 and WAV files) with different sampling rates, convert them into the PCM-representation that WebRTC-VAD is using, apply WebRTC-VAD to detect voice activity and finally process the result by producing Numpy-Arrays again from PCM data because they are easiest to work with when using Librosa
My problem
The WebRTC-VAD module only works correctly when using the wave module. This module returns PCM data as bytes objects. It does not work when feeding it Numpy arrays that have been obtained e.g. by using librosa.load(...). I have not found a way to convert between the two representations.
What I have done so far
I have written the following functions to read audio data from audio files and automatically convert them:
Generic function to read/convert any audio data with Librosa (--> returns Numpy array):
def read_audio(file_path, sample_rate=None, mono=False):
return librosa.load(file_path, sr=sample_rate, mono=mono)
Functions to read arbitrary data as PCM data (--> returns bytes):
def read_audio_vad(file_path):
audio, rate = librosa.load(file_path, sr=16000, mono=True)
tmp_file = 'tmp.wav'
sf.write(tmp_file, audio, rate, subtype='PCM_16')
audio, rate = read_pcm16_wave(tmp_file)
remove(tmp_file)
return audio, rate
def read_pcm16_wave(file_path):
with wave.open(file_path, 'rb') as wf:
sample_rate = wf.getframerate()
pcm_data = wf.readframes(wf.getnframes())
return pcm_data, sample_rate
As you can see I am making a detour by reading/converting the audio data with librosa first. This is needed so I can read from MP3 files or WAV files with arbitrary encodings and automatically resample it to 16kHz mono with Librosa. I am then writing to a temporary file. Before deleting the file, I read the contents out again, but this time using the wave module. This gives me the PCM data.
I now have the following code to extract the voice activity and produce Numpy arrays:
def webrtc_voice(audio, rate):
voiced_frames = webrtc_split(audio, rate)
tmp_file = 'tmp.wav'
for frames in voiced_frames:
voice_audio = b''.join([f.bytes for f in frames])
write_pcm16_wave(tmp_file, voice_audio, rate)
voice_audio, rate = read_audio(tmp_file)
remove(tmp_file)
start_time = frames[0].timestamp
end_time = (frames[-1].timestamp + frames[-1].duration)
start_frame = int(round(start_time * rate / 1e3))
end_frame = int(round(end_time * rate / 1e3))
yield voice_audio, rate, start_frame, end_frame
def write_pcm16_wave(path, audio, sample_rate):
with wave.open(path, 'wb') as wf:
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(sample_rate)
wf.writeframes(audio)
As you can see I am taking the detour over a temporary file again to write PCM data first and then read the temporary file out again with Librosa to get a Numpy array. The webrtc_split function is the implementation from the example implementation with only few minor changes. For completeness sake I am posting it here:
def webrtc_split(audio, rate, aggressiveness=3, frame_duration_ms=30, padding_duration_ms=300):
vad = Vad(aggressiveness)
num_padding_frames = int(padding_duration_ms / frame_duration_ms)
ring_buffer = collections.deque(maxlen=num_padding_frames)
triggered = False
voiced_frames = []
for frame in generate_frames(audio, rate):
is_speech = vad.is_speech(frame.bytes, rate)
if not triggered:
ring_buffer.append((frame, is_speech))
num_voiced = len([f for f, speech in ring_buffer if speech])
if num_voiced > 0.9 * ring_buffer.maxlen:
triggered = True
for f, s in ring_buffer:
voiced_frames.append(f)
ring_buffer.clear()
else:
voiced_frames.append(frame)
ring_buffer.append((frame, is_speech))
num_unvoiced = len([f for f, speech in ring_buffer if not speech])
if num_unvoiced > 0.9 * ring_buffer.maxlen:
triggered = False
yield voiced_frames
ring_buffer.clear()
voiced_frames = []
if voiced_frames:
yield voiced_frames
class Frame(object):
"""
object holding the audio signal of a fixed time interval (30ms) inside a long audio signal
"""
def __init__(self, bytes, timestamp, duration):
self.bytes = bytes
self.timestamp = timestamp
self.duration = duration
def generate_frames(audio, sample_rate, frame_duration_ms=30):
frame_length = int(sample_rate * frame_duration_ms / 1000) * 2
offset = 0
timestamp = 0.0
duration = (float(frame_length) / sample_rate)
while offset + frame_length < len(audio):
yield Frame(audio[offset:offset + frame_length], timestamp, duration)
timestamp += duration
offset += frame_length
My question
My implementation with writing/reading temporary files with the wave module and reading/writing these files with Librosa to get Numpy Arrays seems overly complicated to me. However, despite spending a whole day on the matter I did not find a way to convert directly between the two encodings. I admit I don't fully understand all the details of PCM and WAVE files, the impact of using 16/24/32-Bit for PCM data or the endianness. I hope my explanations above are detailed enough and not too much. Is there an easier way to convert between the two representations in-memory?
It seems that WebRTC-VAD, and the Python wrapper, py-webrtcvad, expects the audio data to be 16bit PCM little-endian - as is the most common storage format in WAV files.
librosa and its underlying I/O library pysoundfile however always returns floating point arrays in the range [-1.0, 1.0]. To convertt this to bytes containing 16bit PCM you can use the following float_to_pcm16 function.
def float_to_pcm16(audio):
import numpy
ints = (audio * 32767).astype(numpy.int16)
little_endian = ints.astype('<u2')
buf = little_endian.tostring()
return buf
def read_pcm16(path):
import soundfile
audio, sample_rate = soundfile.read(path)
assert sample_rate in (8000, 16000, 32000, 48000)
pcm_data = float_to_pcm16(audio)
return pcm_data, sample_rate
Related
I need to take an .wav audio file that's noisy and filter out all that noise. I have to do it using Fourier Transform. After some days researching and experimenting, I finally made a working function, the problem is that it doesn't work as I intend it to. Here is the function I made:
# Audio signal processing
from scipy.io.wavfile import read, write
import matplotlib.pyplot as plt
import numpy as np
from scipy.fft import fft, fftfreq, ifft
def AudioSignalProcessing(audio):
# Import the .wav format audio into two variables:
# sampling (int)
# audio signal (numpy array)
sampling, signal = read(audio)
# time duration of the audio
length = signal.shape[0] / sampling
# x axis based on the time duration
time = np.linspace(0., length, signal.shape[0])
# show original signal
plt.plot(time, signal)
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.title("Original signal")
plt.show()
# apply Fourier transform and normalize
transform = abs(fft(signal))
transform = transform/np.linalg.norm(transform)
# obtain frequencies
xf = fftfreq(transform.size, 1/sampling)
# show transformed signal (frequencies domain)
plt.plot(xf, transform)
plt.xlabel("Frecuency (Hz)")
plt.ylabel("Amplitude")
plt.title("Frequency domain signal")
plt.show()
# filter the transformed signal to a 40% of its maximum amplitude
threshold = np.amax(transform)*0.4
filtered = transform[np.where(transform > threshold)]
xf_filtered = xf[np.where(transform > threshold)]
# show filtered transformed signal
plt.plot(xf_filtered, filtered)
plt.xlabel("Frecuency (Hz)")
plt.ylabel("Amplitude")
plt.title("FILTERED time domain signal")
plt.show()
# transform the signal back to the time domain
filtrada = ifft(signal)
# show original signal filtered
plt.plot(time, filtrada)
plt.xlabel("Time (s)")
plt.ylabel("Amplitude")
plt.title("Filtered signal")
plt.show()
# convert audio signal to .wav format audio
# write(audio.replace(".wav", " filtrado.wav"), sampling, filtrada.astype(signal.dtype))
return None
AudioSignalProcessing("audio.wav")
Here is the output plots:
Original signal
Transformed signal
Filtered transformed signal
Filtered audio signal
The filtered frequencies don't look as I think they should, and after converting the filtered signal back to audio it doesn't sound good at all. Also, I've tried with different audios but the same filter distortion happens.
I suggest asking at https://dsp.stackexchange.com/ for detailed signal processing questions.
It looks like you want to keep only those frequency components that are within at least 40% of the maximum component. If that is the case:
Keep the complex form of the DFT, or you won't be able to transform back; so remove the abs from the line transform = abs(fft(signal)).
Don't use np.where to "keep" the frequencies you want; instead, set the places where the transform magnitude is below you threshold to 0; something like
transform[abs(transform) < 0.4 * max(abs(transform))] = 0
Finally, apply the inverse DFT to this altered transform; you've applied it to signal (see line filtrata = ifft(signal)). (You probably get warning when plotting filtrada about discarding imaginary values.)
I can't seem to find any documentation on how to use this model.
I am trying to use it to print out the objects that appear in a video
any help would be greatly appreciated
I am just starting out so go easy on me
I am trying to use it to print out the objects that appear in a video
I interpret that your problem is to print out the name of the found objects.
I don't know how you implemented where you got Fast RCNN trained on OpenImages v4. Therefore, I will give you the way with the model from Tensorflow Hub. Google Colab. AI Hub
After some digging around and a LOT of trial and error I came up with this
#!/home/ahmed/anaconda3/envs/TensorFlow/bin/python3.8
import tensorflow as tf
import tensorflow_hub as hub
import time,imageio,sys,pickle
# sys.argv[1] is used for taking the video path from the terminal
video = sys.argv[1]
#passing the video file to ImageIO to be read later in form of frames
video = imageio.get_reader(video)
dictionary = {}
#download and extract the model( faster_rcnn/openimages_v4/inception_resnet_v2 or
# openimages_v4/ssd/mobilenet_v2) in the same folder
module_handle = "*Path to the model folder*"
detector = hub.load(module_handle).signatures['default']
#looping over every frame in the video
for index, frames in enumerate(video):
# converting the images ( video frames ) to tf.float32 which is the only acceptable input format
image = tf.image.convert_image_dtype(frames, tf.float32)[tf.newaxis]
# passing the converted image to the model
detector_output = detector(image)
class_names = detector_output["detection_class_entities"]
scores = detector_output["detection_scores"]
# in case there are multiple objects in the frame
for i in range(len(scores)):
if scores[i] > 0.3:
#converting form bytes to string
object = class_names[i].numpy().decode("ascii")
#adding the objects that appear in the frames in a dictionary and their frame numbers
if object not in dictionary:
dictionary[object] = [index]
else:
dictionary[object].append(index)
print(dictionary)
I have 5 HDF5 files that are 22 GB each. Each HDF5 file is a series of 4801 images that are 1920 by 1200 in size. I need to load the same frame number from each HDF5 file, get rid of some rogue pixels, average the stack of 5 images, and write a new HDF5 file with one processed image at each frame number. Because I can't load all 5 HDF5 files in at once without running out of RAM, I am only loading in chunks of images from each HDF5 file, putting 5 images for each frame number into a queue, processing the stack, and writing the resulting image to an HDF5 file. Right now I am using h5py to perform any reading/writing of HDF5 files.
I would like to know what the most computationally effective way is of working on chunked data? Right now, I am dedicating one processor to be the writer, then looping through some chunk size of data for which I create a number of consumers, put the data in a queue, wait for the consumers to be finished, then rinse and repeat until all of the images are processed. This means that every time the loop advances, it creates new consumer processes - I imagine there is some overhead in this. A sample of the code is below.
#!/usr/bin/env python
import time
import os
from multiprocessing import Process, Queue, JoinableQueue, cpu_count
import glob
import h5py
import numpy as np
'''Function definitions'''
# The consumer function takes data off of the Queue
def consumer(inqueue,output):
# Run indefinitely
while True:
# If the queue is empty, queue.get() will block until the queue has data
all_data = inqueue.get()
if all_data:
#n is the index corresponding to the projection location
n, image_data = all_data
#replace zingers with median and average stack
#Find the median for each pixel of the prefiltered image
med = np.median(image_data,axis=0)
#Loop through the image set
for j in range(image_data.shape[0]):
replicate = image_data[j,...]
mask = replicate - med > zinger_level
replicate[mask] = med[mask] # Substitute with median
image_data[j,...] = replicate # Put data back in place
out = np.mean(image_data,axis=0,dtype=np.float32).astype(np.uint16)
output.put((n,out))
else:
break
#function for writing out HDF5 file
def write_hdf(output,output_filename):
#create output HDF5 file
while True:
args = output.get()
if args:
i,data = args
with h5py.File(output_filename,'a') as fout:
fout['Prefiltered_images'][i,...] = data
else:
break
def fprocess_hdf_stack(hdf_filenames,output_filename):
file_list = []
for fname in hdf_filenames:
file_list.append(h5py.File(fname,'r'))
#process chunks of data so that we don't run out of memory
totsize = h5py.File(hdf_filenames[0],'r')['exchange']['data'].shape[0]
data_shape = h5py.File(hdf_filenames[0],'r')['exchange']['data'].shape
fout.create_dataset('Prefiltered_images',data_shape,dtype=np.uint16)
fout.close()
ints = range(totsize)
chunkSize= 100
#initialize how many consumers we would like working
num_consumers = cpu_count()*2
#Create the Queue objects
inqueue = JoinableQueue()
output = Queue()
#start process for writing HDF5 file
proc = Process(target=write_hdf, args=(output,output_filename))
proc.start()
print("Loading %i images into memory..."%chunkSize)
for i in range(0,totsize,chunkSize):
time0 = time.time()
chunk = ints[i:i+chunkSize]
data_list = []
#Make a list of the HDF5 datasets we are reading in
for files in file_list:
#shape is (angles, rows, columns)
data_list.append(files['exchange']['data'][chunk,...])
data_list = np.asarray(data_list)
print("Elapsed time to load images %i-%i is %0.2f minutes." %(chunk[0],chunk[-1],(time.time() - time0)/60))
consumers = []
#Create consumer processes
for i in range(num_consumers):
p = Process(target=consumer, args=(inqueue,output))
consumers.append(p)
p.start()
for n in range(data_list.shape[1]):
#Feed data into the queue
inqueue.put((chunk[n],data_list[:,n,...]))
#Kill all of the processes when everything is finished
for i in range(num_consumers):
inqueue.put(None)
for c in consumers:
c.join()
print("Elapsed time to process images %i-%i is %0.2f minutes." %(chunk[0],chunk[-1],(time.time() - time0)/60))
time.sleep(1)
output.put(None)
proc.join()
#Close the input HDF5 files.
for hdf_file in file_list:
hdf_file.close()
print("Input HDF5 files closed.")
return
if __name__ == '__main__':
start_time = time.time()
raw_images_filenames = glob.glob(raw_images_dir + raw_images_basename)
tempname = os.path.basename(raw_images_filenames[0]).split('.')[0]
tempname_split = tempname.split('_')[:-1]
output_filename = output_dir+'_'.join(tempname_split) + '_Prefiltered.hdf5'
fprocess_hdf_stack(raw_images_filenames,output_filename)
print("Elapsed time is %0.2f minutes" %((time.time() - start_time)/60))
I don't think my bottleneck is actually in the loading of the images. It is in initializing the consumers and carrying out the processing on the 5 images per each frame number. I've played around with taking the consumer function out of the for loop, but I don't know how to put a memory cap on this so that I don't run out of RAM. Thanks!
I'm using the GNURadio python interface to UHD, and I'm trying to set a specific time to start collecting samples and either collect a specific number of samples or stop the collection of samples at a specific time. Essentially, creating a timed snapshot of samples. This is something similar to the C++ Ettus UHD example 'rx_timed_sample'.
I can get a flowgraph to start at a specific time, but I can't seem to get it to stop at a specific time (at least without causing overflows). I've also tried doing a finite aquisition, which works, but I can't get it to start at a specific time. So I'm kind of lost at what to do next.
Here is my try at the finite acquisition (seems to just ignore the start time and collects 0 samples):
num_samples = 1000
usrp = uhd.usrp_source(
",".join(("", "")),
uhd.stream_args(
cpu_format="fc32",
channels=range(1),
),
)
...
usrp.set_start_time(absolute_start_time)
samples = usrp.finite_acquisition(num_samples)
I've also tried some combinations of following without success (TypeError: in method 'usrp_source_sptr_issue_stream_cmd', argument 2 of type '::uhd::stream_cmd_t const &'):
usrp.set_command_time(absolute_start_time)
usrp.issue_stream_cmd(uhd.stream_cmd.STREAM_MODE_NUM_SAMPS_AND_DONE)
I also tried the following in a flowgraph:
...
usrp = flowgrah.uhd_usrp_source_0
absolute_start_time = uhd.uhd_swig.time_spec_t(start_time)
usrp.set_start_time(absolute_start_time)
flowgrah.start()
stop_cmd = uhd.stream_cmd(uhd.stream_cmd.STREAM_MODE_STOP_CONTINUOUS)
absolute_stop_time = absolute_start_time + uhd.uhd_swig.time_spec_t(collection_time)
usrp.set_command_time(absolute_stop_time)
usrp.issue_stream_cmd(stop_cmd)
For whatever reason the flowgraph one generated overflows consistently for anything greater than a .02s collection time.
I was running into a similar issue and solved it by using the head block.
Here's a simple example which saves 10,000 samples from a sine wave source then exits.
#!/usr/bin/env python
# Evan Widloski - 2017-09-03
# Logging test in gnuradio
from gnuradio import gr
from gnuradio import blocks
from gnuradio import analog
class top_block(gr.top_block):
def __init__(self, output):
gr.top_block.__init__(self)
sample_rate = 32e3
num_samples = 10000
ampl = 1
source = analog.sig_source_f(sample_rate, analog.GR_SIN_WAVE, 100, ampl)
head = blocks.head(4, num_samples)
sink = blocks.file_sink(4, output)
self.connect(source, head)
self.connect(head, sink)
if __name__ == '__main__':
try:
top_block('/tmp/out').run()
except KeyboardInterrupt:
pass
I'm playing with MNIST examples and noticed that protobuf serialized features are horribly slow both serialize and deserialize.
My simple test reads CSV with 42000 images and writes it into binary file using TFRecordWriter. Benchmark results are quite surprising:
pickle of image as string: 19.292 seconds, size=130MB
Example/Features encoding, byte array: 108.510 seconds, size=100MB
Example/Features encoding, int64 array: 145.014 seconds, size=39MB
With quite plausible size results, looks like protobuf feature encoding is very slow. I see the same slow results on reading, Example.FromString() is ~5-7 times slower than pickle.
Are there tricks/suggestions how to overcome this?
My encoding code snippet is below.
writer = TFRecordWriter(FLAGS.out)
image_id = 1
for row in reader:
row = map(int, row)
f_dict = {}
label = row[0]
image = row[1:]
f_dict["label"] = tf.train.Feature(int64_list=tf.train.Int64ListList(value=[label]))
f_dict["image"] = tf.train.Feature(int64_list=tf.train.Int64ListList(value=image))
features = tf.train.Features(feature=f_dict)
example = tf.train.Example(features=features)
writer.write(example.SerializeToString())