Big Commerce - Shop by Price Algorithm - bigcommerce

The current algorithm for computing the "tiers" in the Big Commerce "Shop by Price" filter yields some jagged results (i.e. 0~$794.00, $794.00~$1138.00, and so on.) Is there a way to alter this algorithm to yield more even-numbered tiers?

The logic for calculating Shop by Price tiers pulls from the core BC app and can't be modified. If you wanted to change the way price tiers are broken out client-side, you could replace the built-in {{shop_by_price}} using JavaScript on the frontend. The difference is you'd essentially be building your own vs modifying the existing logic.

Related

Orderbook matching engine

My question is more of a conceptual one, rather than coding question, but I also accept code (the ideal answer).
So I have a huge dataset of secondly orderbook snapshots (that is, for each second, I have the best 200 ask prices (and their volumes) and the best 200 bid prices (and their volumes)). This is real data, real orders that were submitted at some point in time. For each state, the data is represented as pandas dataframe which has timestamp,side,price,volume. So, an example is:
2023-02-14 00:01:01, 'ask', 19874.11, 0.3
But we have many ask and bid orders per state. My question is the following: for a state s_i, if I decide to do a limit order with a specified price and volume, how would that change change state s_(i+1) (this is just a simulation). Same question goes if I had a market order with some volume.
Purpose:
I am trying to optimize order execution, and there is already existing literature on this subject. The idea is, when I train my agent, I want to reflect each decision it makes so I can update my next states based on what actions/decisions the agent has done.
Literature:
https://www.econstor.eu/bitstream/10419/216206/1/1696077540.pdf
You can try to deploy your exchange and test it there, if you can implement the logic you need for working with orders.
There is an open-source project of crypto exchange Opencex, here is a link to it:
https://github.com/Polygant/OpenCEX

SQL Server Payment estimate probabilty - best maths equations and recursive query?

I have a table which holds a list of transactions.
Task: To estimate the next transaction amount.
Problem:
The actual payment periods for each rows is a varible, which can be weekly, monthly or anything choosen by the end user.
To estimate the next payment, based on previous data, can anyone suggest a good method?
At the moment I basically take the figure back to the daily amount then multiple by period i.e. week/month/q/year. Then given the history, choose the result that has the highest incidence (count).
This does not generate an accuarate estimations due to payments within payments that I dont need to care about i.e. £100 real payment but +20 for addition charges that are irrelevant.
Another way is to calculate the average,std,varience between payments then choose the highest probability.
Problem is, i've been unable to code this in SQL.
SELECT [Identifier]
,[DateTranEntered]
,[Type]
,[TranDateFrom],
,[TranDateTo]
,[Amount]
,[ReferenceForTran]
,[CreatedDate]
FROM .[TranTable]
Perhaps something with recursion through the table and calculate every transaction daily amount then with the variance, incidence - choose from the last 'x' what the estimate guess is ?
Problem is I have gotten stuck with the resurive query for this.
Any thoughts about this?
SQL Server Analysis services has a suite of data mining tools that provide algorithms such as Linear Regressions, Decision Trees and Neural Networks. You can learn more about them here: http://msdn.microsoft.com/en-us/library/ms175595.aspx. It sounds like Linear Regressions might be the best place to start for this problem.

Bloomberg - get real world prices from the API

For a number of financial instruments, Bloomberg scales the prices that are shown in the Terminal - for example:
FX Futures at CME: e.g. ADZ3 Curncy (Dec-2013 AUD Futures at CME) show as 93.88 (close on 04-Oct-2013), whereas the actual (CME) market/settlement price was 0.9388
FX Rates: sometimes FX rates are scaled - this may vary by which way round the FX rate is asked for, so EURJPY Curncy (i.e. JPY per EUR) has a BGN close of 132.14 on 04-Oct-2013. The inverse (EUR per JPY) would be 0.007567. However, for JPYEUR Curncy (i.e. EUR per JPY), BGN has a close of 0.75672 for 04-Oct-2013.
FX Forwards: Depending on whether you are asking for rates or forward points (which can be set by overrides)... if you ask for rates, you might get these in terms of the original rate, so for EURJPY1M Curncy, BGN has a close of 132.1174 on 04-Oct-2013. But if you ask for forward points, you would get these scaled by some factor - i.e. -1.28 for EURJPY1M Curncy.
Now, I am not trying to criticise Bloomberg for the way that they represent this data in the Terminal. Goodness only knows when they first wrote these systems, and they have to maintain the functionality that market practitioners have come to know and perhaps love... In that context, scaling to the significant figures might make sense.
However, when I am using the API, I want to get real-world, actual prices. Like... the actual price at the exchange or the actual price that you can trade EUR for JPY.
So... how can I do that?
Well... the approach that I have come to use is to find the FLDS that communicate this scaling information, and then I fetch that value to reverse the scale that they have applied to the values. For futures, that's PX_SCALING_FACTOR. For FX, I've found PX_POS_MULT_FACTOR most reliable. For FX forward points, it's FWD_SCALE.
(It's also worth mentioning that how these are applied vaires - so PX_SCALING_FACTOR is what futures prices should be divided by, PX_POS_MULT_FACTOR is what FX rates should be multipled by, and FWD_SCALE is how many decimal places to divide the forward points by to get to a value that can be added to the actual FX rate.)
The problem with that is that it doubles the number of fetchs I have to make, which adds a significant overhead to my use of the API (reference data fetches also seem to take longer than historical data fetches.) (FWIW, I'm using the API in Java, but the question should be equally applicable to using the API in Excel or any of the other supported languages.)
I've thought about finding out this information and storing it somewhere... but I'd really like to not have to hard code that. Also, that would require to spend a very long time finding out the right scaling factors for all the different instruments I'm interested in. Even then, I would have no guarantee that they wouldn't change their scale on me at some point!
What I would really like to be able to do is apply an override in my fetch that would allow me specify what scale should be used. (And no, the fields above do not seem to be override-able.) I've asked the "helpdesk" about this on lots and lots of occasions - I've been badgering them about it for about 12 months, but as ever with Bloomberg, nothing seems to have happened.
So...
has anyone else in the SO community faced this problem?
has anyone else found a way of setting this as an override?
has anyone else worked out a better solution?
Short answer: you seem to have all the available information at hand and there is not much more you can do. But these conventions are stable over time so it is fine to store the scales/factors instead of fetching the data everytime (the scale of EURGBP points will always be 4).
For FX, I have a file with:
number of decimal (for spot, points and all-in forward rate)
points scale
spot date
To answer you specific questions:
FX Futures at CME: on ADZ3 Curncy > DES > 3:
For this specific contract, the price is quoted in cents/AUD instead of exchange convention USD/AUD in order to show greater precision for both the futures and options. Calendar spreads are also adjusted accordingly. Please note that the tick size has been adjusted by 0.01 to ensure the tick value and contract value are consistent with the exchange.
Not sure there is much you can do about this, apart from manually checking the factor...
FX Rates: PX_POS_MULT_FACTOR is your best bet indeed - note that the value of that field for a given pair is extremely unlikely to change. Alternatively, you could follow market conventions for pairs and AFAIK the rates will always be the actual rate. So use EURJPY instead of JPYEUR. The major currencies, in order, are: EUR, GBP, AUD, NZD, USD, CAD, CHF, JPY. For pairs that don't involve any of those you will have to fetch the info.
FX Forwards: the points follow the market conventions, but the scale can vary (it is 4 most of the time, but it is 3 for GBPCZK for example). However it should not change over time for a given pair.

Program to optimize cost

This is my problem set for one of my CS class and I am kind of stuck. Here is the summary of the problem.
Create a program that will:
1) take a list of grocery stores and its available items and prices
2) take a list of required items that you need to buy
3) output a supermarket where you can get all your items with the cheapest price
input: supermarkets.list, [tomato, orange, turnip]
output: supermarket_1
The list looks something like
supermarket_1
$2.00 tomato
$3.00 orange
$4.00 tomato, orange, turnip
supermarket_2
$3.00 tomato
$2.00 orange
$3.00 turnip
$15.00 tomato, orange, turnip
If we want to buy tomato and orange, then the optimal solution would be buying
from supermarket_1 $4.00. Note that it is possible for an item to be bough
twice. So if wanted to buy 2 tomatoes, buying from supermarket_1 would be the
optimal solution.
So far, I have been able to put the dataset into a data structure that I hope will allow me to easily do operations on it. I basically have a dictionary of supermarkets and the value would point to a another dictionary containing the mapping from each entry to its price.
supermarket_1 --> [turnip --> $2.00]
[orange --> $1.50]
One way is to use brute force, to get all combinations and find whichever satisfies the solution and find the one with the minimum. So far, this is what I can come up with. There is no assumption that the price of a combination of two items would be less than buying each separately.
Any suggestions hints are welcome
Finding the optimal solution for a specific supermarket is a generalization of the set cover problem, which is NP-complete. The reduction goes as follows:
Given an instance of the set cover problem, just define a cost function assigning 1 to each combination, apply an algorithm that solves your problem, and you obtain an optimal solution of the set cover instance. (Finding the minimal price hence corresponds to finding the minimum number of covering sets.) Thus, your Problem is NP-hard, and you cannot expect to finde a solution that runs in polynomial time.
You really should implement the brute-force method you mentioned. I too recommand you to do this as a first step. If the performance is not sufficient, you can try a
using a MIP-formulation and a solver like CPLEX, or you have to devolop a heuristic approach.
For a single supermarket, it is rather trivial to find a mixed integer program (MIP). Let x_i be the integer number how often product combination i is contained in a solution, c_i its cost and w_ij the number how often product j is contained in product combination i. Then, you are minimizing
sum_i x_i * c_i
subject to conditions like
sum_i x_i * w_ij >= r_j,
where r_j is the number how often product j is required.
Well, you have one method, so implement it now so you have something that works to submit. A brute-force solution should not take long to code up, then you can get some performance data and you can think about the problem more deeply. Guesstimate the number of supermarkets in a reasonable shopping range in a large city. Create that many supermarket records and link them to product tables with random-ish prices, (this is more work than the solution).
Run your brute-force solution. Does it work? If it outputs a solution, 'manually' add up the prices and list them against three other 'supermarket' records taken at random, (just pick a number), showing that the total is less or equal. Modify the price of an item on your list so that the solution is no longer cheap and re-run, so that you get a different solution.
Is it so fast that no further work is justified? If so, say so in the conclusions section of your report and post the lot to your prof/TA. You understood the task, thought about it, came up with a solution, implemented it, tested it with a representative dataset and so shown that functionality is demonstrable and performance is adequate - your assignment is over, go to the bar, think about the next one over a beer.
I am not sure what you mean by "brute force" solution.
Why don't you just calculate the cost of your list of items in each of the supermarkets, and then select the minimum? Complexity would be in O(#items x #supermarkets) which is good.
Regarding your data structure you can also simply have a matrix (2 dimension array) price[super][item], and use ids for your supermarkets/items.

algorithms to select price ranges

What is best way to represent a sereis of item, price ranges to reduce noise for the end user.
Typically when an item is displayed they show a histogram of price ranges is displayed in ecommerce sites. Are there standard algorithms that these sites use for this display?.
Well it seems to me that you would first and foremost need a way to aggregate this data. That having been said, if you have that data and need to create a histogram it can be fairly simple in the programming language R (here is some documentation: http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/base/html/hist.html ). There is also an R extension I've read about that allows you to post/run R code in wiki-like pages ( http://mars.wiwi.hu-berlin.de/mediawiki/slides/index.php/R_extension_-_Mediawiki ).
If you already have this data (in this case prices) I dont think you need an algorithm so much as you just need a way to display it in a type of graph. I think R should be useful. I hope this helps!