How to inject dependency using koin in top level function - kotlin

I have top-level function like
fun sendNotification(context:Context, data:Data) {
...//a lot of code here
}
That function creates notifications, sometimes notification can contain image, so I have to download it. I`m using Glide which is wrapped over interface ImageManager, so I have to inject it. I use Koin for DI and the problem is that I cannot write
val imageManager: ImageManager by inject()
somewhere in my code, because there is no something that implements KoinComponent interface.
The most obvious solution is to pass already injected somewhere else imageManager as parameter of function but I dont want to do it, because in most cases I dont need imageManager: it depends on type of Data parameter.

Easiest way is to create KoinComponent object as wrapper and then to get variable from it:
val imageManager = object:KoinComponent {val im: ImageManager by inject()}.im
Btw its better to wrap it by some function, for example I use
inline fun <reified T> getKoinInstance(): T {
return object : KoinComponent {
val value: T by inject()
}.value
}
So if I need instance I just write
val imageManager:ImageManager = getKoinInstance()
or
val imageManager = getKoinInstance<ImageManager>()

I did it in this way
fun Route.general() {
val repo: OperationRepo by lazy { GlobalContext.get().koin.get() }
...
}

Related

How to dynamically chose a transform function based on current observable in project reactor?

Hello dear reactive programmers, I started to learn project reactor but I still struggle to figure out what operator to use when. I figured out, that if I want to have reusable parts to define a reactor flow, I can use the transform operator. What I would like to achieve is to use a certain implementation of such a flow function based on the current observables context. For a Mono flow, I came up with this, but I am very unsure, if it is a good solution:
So here is a part of the flow
class CloudeventOverDelegatorRoute(
val fromHttpToDelegatorRoute: FromHttpToDelegatorRoute,
val delegatorProvider: DelegatorProvider,
val fromDelegatorToHttpRoute: FromDelegatorToHttpRoute
): MessageRoute<HttpBaseMessage, HttpResponseMessage> {
override fun isHandlerFor(context: RouteContext): Boolean {
return fromHttpToDelegatorRoute.isHandlerFor(context)
&& fromDelegatorToHttpRoute.isHandlerFor(context)
}
override fun buildPipeline(input: Mono<RoutableMessage<HttpBaseMessage>>): Mono<RoutableMessage<HttpResponseMessage>> {
var dynamicallyDeterminedDelegator: Delegator? = null
return input.transform {
fromHttpToDelegatorRoute.buildPipeline(input)
}.handle<RoutableMessage<InternalMessage>> { t, u ->
dynamicallyDeterminedDelegator = delegatorProvider.provideDelegatorFor(t.routeContext)
u.next(t)
u.complete()
}.transform {
dynamicallyDeterminedDelegator!!.sendDelegated(it)
}.transform { fromDelegatorToHttpRoute.buildPipeline(it) }
}
}
Here is the dynamic selection logic
interface DelegatorProvider {
fun provideDelegatorFor(context: RouteContext): Delegator
}
class FirstMatchDelegatorProvider(
private val delegators: List<Delegator>
): DelegatorProvider {
override fun provideDelegatorFor(context: RouteContext): Delegator {
return delegators.firstOrNull {
it.isHandlerFor(context)
}?: throw IllegalStateException("No Delegator route available for context: $context")
}
}
And this is the delegator providing an essential sub-part of the whole flow
interface Delegator {
fun isHandlerFor(context: RouteContext): Boolean
fun sendDelegated(input: Mono<RoutableMessage<InternalMessage>>): Mono<RoutableMessage<InternalStatusMessage>>
}
What do you think? How would you solve it?
this approach is problematic because it relies on shared state (the dynamicallyDeterminedDelegator variable). If multiple subscribers subscribe to the returned Mono, they could overwrite each other delegator. Maybe that (multiple subscriptions) can't happen in your application, but this is a very bad habit to get into in any case.
looks like you can derive a delegator out of a RoutableMessage<InternalMessage> , and that you don't really need to retain that delegator.
the easiest way to resolve and apply the delegator to the routableMessage in one go is simply to use flatMap. see the (pseudo) java code below:
.flatMap(routableMessage -> {
val delegator = delegatorProvider.provideDelegatorFor(routableMessage.routeContext);
return delegator.sendDelegated(routableMessage);
})

kotlinx.serialization: inject local parameter

I need to inject a local value to a class constructor during deserialization. For example, look at the following class.
#Serializable
class SomeClass(val local: Context, val serialized: String)
I want the field local to be skipped during serialization and substituted with some predefined local value during deserialization.
The reason behind is that I'm going to transfer models through network, but operations on these models rely on a local context which I want to inject.
Because I haven't find any standard ways to achieve it, I've decided to make use of contextual serialization. So I have written the serializer:
class ContextualInjectorSerializer<T>(private val localValue: T) : KSerializer<T> {
override val descriptor = SerialDescriptor("ValueInjection", StructureKind.OBJECT)
override fun deserialize(decoder: Decoder): T {
decoder.beginStructure(descriptor).endStructure(descriptor)
return localValue
}
override fun serialize(encoder: Encoder, value: T) {
encoder.beginStructure(descriptor).endStructure(descriptor)
}
}
And used it this way:
// Context is marked with #Serializable(with = ContextSerializer::class)
val json = Json(JsonConfiguration.Stable, SerializersModule {
contextual(Context::class, ContextualInjectorSerializer(context))
})
// serialize/deserialize
Surprisingly, it works pretty fine on JVM. However, when I compiled it to JS and tested, I got TypeError: Cannot read property 'siteId' of undefined. Here siteId is a field of Context which I try to access.
Is there a standard way to inject local parameters? What's wrong with my trick?

Generic inline function

Let's say I have an object which helps me to deserialize other objects from storage:
val books: MutableList<Book> = deserializer.getBookList()
val persons: MutableList<Person> = deserializer.getPersonList()
The methods getBookList and getPersonList are extension functions I have written. Their logic is allmost the same so I thought I may can combine them into one method. My problem is the generic return type. The methods look like this:
fun DataInput.getBookList(): MutableList<Book> {
val list = mutableListOf<Book>()
val size = this.readInt()
for(i in 0 .. size) {
val item = Book()
item.readExternal(this)
list.add(item)
}
return list
}
Is there some Kotlin magic (maybe with inline functions) which I can use to detect the List type and generify this methods? I think the problem would be val item = T() which will not work for generic types, right? Or is this possible with inline functions?
You cannot call the constructor of a generic type, because the compiler can't guarantee that it has a constructor (the type could be from an interface). What you can do to get around this though, is to pass a "creator"-function as a parameter to your function. Like this:
fun <T> DataInput.getList(createT: () -> T): MutableList<T> {
val list = mutableListOf<T>()
val size = this.readInt()
for(i in 0 .. size) {
val item = createT()
/* Unless readExternal is an extension on Any, this function
* either needs to be passed as a parameter as well,
* or you need add an upper bound to your type parameter
* with <T : SomeInterfaceWithReadExternal>
*/
item.readExternal(this)
list.add(item)
}
return list
}
Now you can call the function like this:
val books: MutableList<Book> = deserializer.getList(::Book)
val persons: MutableList<Person> = deserializer.getList(::Person)
Note:
As marstran mentioned in a comment, this requires the class to have a zero-arg constructor to work, or it will throw an exception at runtime. The compiler will not warn you if the constructor doesn't exist, so if you pick this way, make sure you actually pass a class with a zero-arg constructor.
You can't initialize generic types, in Kotlin or Java. At least not in the "traditional" way. You can't do this:
val item = T()
In Java, you'd pass a Class<T> and get the constructor. Very basic example of that:
public <T> void x(Class<T> cls){
cls.getConstructor().newInstance(); // Obviously you'd do something with the return value, but this is just a dummy example
}
You could do the same in Kotlin, but Kotlin has a reified keyword that makes it slightly easier. This requires an inline function, which means you'd change your function to:
inline fun <reified T> DataInput.getBookList(): MutableList<T> { // Notice the `<reified T>`
val list = mutableListOf<T>() // Use T here
val size = this.readInt()
for(i in 0 .. size) {
// This is where the initialization happens; you get the constructor, and create a new instance.
// Also works with arguments, if you have any, but you used an empty one so I assume yours is empty
val item = T::class.java.getConstructor().newInstance()!!
item.readExternal(this) // However, this is tricky. See my notes below this code block
list.add(item)
}
return list
}
However, readExternal isn't present in Any, which will present problems. The only exception is if you have an extension function for either Any or a generic type with that name and input.
If it's specific to some classes, then you can't do it like this, unless you have a shared parent. For an instance:
class Book(){
fun readExternal(input: DataInput) { /*Foo bar */}
}
class Person(){
fun readExternal(input: DataInput) { /*Foo bar */}
}
Would not work. There's no shared parent except Any, and Any doesn't have readExternal. The method is manually defined in each of them.
You could create a shared parent, as an interface or abstract class (assuming there isn't one already), and use <reified T : TheSharedParent>, and you would have access to it.
You could of course use reflection, but it's slightly harder, and adds some exceptions you need to handle. I don't recommend doing this; I'd personally use a superclass.
inline fun <reified T> DataInput.getBookList(): MutableList<T> {
val list = mutableListOf<T>()
val size = this.readInt()
val method = try {
T::class.java.getMethod("readExternal", DataInput::class.java)
}catch(e: NoSuchMethodException){
throw RuntimeException()
}catch(e: SecurityException){
throw RuntimeException()// This could be done better; but error handling is up to you, so I'm just making a basic example
// The catch clauses are pretty self-explanatory; if something happens when trying to get the method itself,
// These two catch them
}
for(i in 0 .. size) {
val item: T = T::class.java.getConstructor().newInstance()!!
method.invoke(item, this)
list.add(item)
}
return list
}

How to write a package-level static initializer in Kotlin?

A previous question shows how to put a static initializer inside a class using its companion object. I'm trying to find a way to add a static initializer at the package level, but it seems packages have no companion object.
// compiler error: Modifier 'companion' is not applicable inside 'file'
companion object { init { println("Loaded!") } }
fun main(args: Array<String>) { println("run!") }
I've tried other variations that might've made sense (init on its own, static), and I know as a workaround I can use a throwaway val as in
val static_init = {
println("ugly workaround")
}()
but is there a clean, official way to achieve the same result?
Edit: As #mfulton26's answer mentions, there is no such thing as a package-level function really in the JVM. Behind the scenes, the kotlin compiler is wrapping any free functions, including main in a class. I'm trying to add a static initializer to that class -- the class being generated by kotlin for the free functions declared in the file.
Currently there is no way to add code to the static constructor generated for Kotlin file classes, only top-level property initializers are getting there. This sounds like a feature request, so now there is an issue to track this: KT-13486 Package-level 'init' blocks
Another workaround is to place initialization in top-level private/internal object and reference that object in those functions that depend on the effect of that initialization. Objects are initialized lazily, when they are referenced first time.
fun dependsOnState(arg: Int) = State.run {
arg + value
}
private object State {
val value: Int
init {
value = 42
println("State was initialized")
}
}
As you mentioned, you need a property with something that would run on initialisation:
val x = run {
println("The package class has loaded")
}
I got around it by using a Backing Property on the top-level, under the Kotlin file. Kotlin Docs: Backing Properties
private var _table: Map<String, Int>? = null
public val table: Map<String, Int>
get() {
if (_table == null) {
_table = HashMap() // Type parameters are inferred
// .... some other initialising code here
}
return _table ?: throw AssertionError("Set to null by another thread")
}

Wrong "this" being used in nested closures

I'm trying to keep this minimal, but let me know if I'm being too minimal.
Suppose you have a class hierarchy like this, designed for generating HTML (inspired by the Kotlin tutorial; semi-pseudocode follows):
class Tag {
protected val children = arrayListOf<Tag>()
operator fun String.unaryPlus() = children.add(Text(this))
}
class TagWithChildren : Tag() {
fun head(init: Head.() -> Unit) = initializeTag(Head(), init)
fun script(init: Script.() -> Unit) = initializeTag(Script(), init)
fun <T : Tag> initializeTag(tag: T, init: T.() -> Unit): T {
tag.init()
children.add(tag)
return tag
}
}
class Head : TagWithChildren()
class Script : Tag()
class Text(val str: Text) : Tag()
Notice that Head has head and script methods while Script doesn't.
Now you can construct a template that looks like this:
head {
script {
+"alert('hi');"
}
}
Which works great! However, if the block passed to script tries to call methods that aren't available on Script, it can call the method on Head instead. For example,
head {
script {
script {
+"alert('hi');"
}
}
}
not only isn't a compile error, it's actually equivalent to
head {
script {
}
script {
+"alert('hi');"
}
}
which is super confusing, from a template author's perspective.
Is there any way to prevent method lookups from traveling up the scope like that? I only want it to look at the innermost scope.
UPDATE 11/24/2016:
Kotlin 1.1-M03 has introduced scope control, which I believe solves exactly this problem. https://blog.jetbrains.com/kotlin/2016/11/kotlin-1-1-m03-is-here/
The current behavior is intentional. Code in a lambda has access to receivers of all enclosing scopes. It is possible that a future version of Kotlin will add a modifier that will restrict a lambda with receiver to calling methods on that receiver only and not the enclosing scopes, but in the current version there's no way to change that behavior.
As a workaround, I can have it fail at runtime if I change the classes to look like this:
open class Tag {
operator fun String.unaryPlus()
// pulled up from TagWithChildren, call protected method
fun head(init: Head.() -> Unit) = addChild(Head())
fun script(init: Script.() -> Unit) = addChild(Head())
// throws in Tag
open protected fun addChild(t: Tag) = throw IllegalArgumentException()
}
class TagWithChildren : Tag() {
// overridden to not throw in subclass
protected override fun addChild(t: Tag) = children.add(t)
}
This way, every Tag has the builder methods (solving the scoping problem), but actually calling them may result in a runtime failure.