Add Placeholder to layer - tensorflow

I have a Tensorflow layer with 2 nodes. These are the output nodes of another 2 larger hidden layers. Now I want to add 2 new nodes to this layer, so I end up with 4 nodes in total, and do some last computation. The added nodes are implemented as Placeholders so far, and have a dynamic shape depending on the batch size. Here is a sketch of the net:
Now I want to concatenate Nodes 3 and 4 to the nodes 1 and 2 of the previously computed layer. I know there is tf.concat for this, but I don't understand how to do this correctly.
How do I add Placeholders of the same batchsize as the original net input to a specific layer?
EDIT:
When I use tf.concat over axis=1, I end up with the following problem:
z = tf.placeholder(tf.float32, shape=[None, 2])
Weight_matrix = weight_variable([4, 2])
bias = bias_variable([4, 2])
concat = tf.concat((dnn_out, z), 1)
h_fc3 = tf.nn.relu(tf.matmul(concat, Weight_matrix) + bias)
Adding the bias to the tf.matmul result throws an InvalidArgumentError: Incompatible shapes: [20,2] vs. [4,2].

Since your data is batched, probably over the first dimension, you need to concatenate over the second (axis=1):
import tensorflow as tf
import numpy as np
dnn_output = tf.placeholder(tf.float32, (None, 2)) # replace with your DNN(input) result
additional_nodes = tf.placeholder(tf.float32, (None, 2))
concat = tf.concat((dnn_output, additional_nodes), axis=1)
print(concat)
# > Tensor("concat:0", shape=(?, 4), dtype=float32)
dense_output = tf.layers.dense(concat, units=2)
print(dense_output)
# > Tensor("dense/BiasAdd:0", shape=(?, 2), dtype=float32)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(dense_output, feed_dict={dnn_output: np.ones((5, 2)),
additional_nodes: np.zeros((5, 2))}))

Related

How to make 2 tensors the same length by mean | median imputation of the shortest tensor?

I'm trying to subclass a the base Keras layer to create a layer that will merge the rank 1 output of 2 layers of a skip connection by outputting the Dot product of 2 tensors. The 2 incoming tensors are created by Dense layers parsed by a Neural Architecture Search algorithm that randomly selects the number of Dense units and hence the length of the 2 tensors. These of course will usually not be of the same length. I am trying an experiment to see if casting them to the same length by means of appending the shorter tensor with a mathematically meaningful imputation: [e.g. mean | median | hypotenuse | cos | ... etc] then merging them by means of the dot product will outperform Add or Concatenate merging strategies. To make them the same length:
I try the overall strategy:
Find the shorter tensor.
Pass it to tf.reduce_mean() (aliasing the resulting mean as "rm" for the sake of discussion).
Create a list of [rm for rm in range(['difference in length of the longer tensor and the shorter tensor']). Cast as a tensor if necessary.
[pad | concatenate] the shorter tensor with the result of the operation above to make it equal in length.
Here is where I am running into a dead wall:
Since the tf operation reduce_mean is returning a future with its shape set as None (not assumed to be a scalar of 1), they are in a state of having a shape of '(None,)', which the tf.keras.layers.Dot layer refuses to ingest and throws a ValueError, as it does not see them as being the same length, though they always will be:
KerasTensor(type_spec=TensorSpec(shape=(None,), dtype=tf.float32, name=None), name='tf.math.reduce_mean/Mean:0', description="created by layer 'tf.math.reduce_mean'")
ValueError: A Concatenate layer should be called on a list of at least 1 input. Received: input_shape=[[(None,), (None,)], [(None, 3)]]
My code (in the package/module):
import tensorflow as tf
import numpy as np
class Linear1dDot(tf.keras.layers.Layer):
def __init__(self, input_dim=None,):
super(Linear1dDot, self).__init__()
def __call__(self, inputs):
max_len = tf.reduce_max(tf.Variable(
[inp.shape[1] for inp in inputs]))
print(f"max_len:{max_len}")
for i in range(len(inputs)):
inp = inputs[i]
print(inp.shape)
inp_lenght = inp.shape[1]
if inp_lenght < max_len:
print(f"{inp_lenght} < {max_len}")
# pad_with = inp.reduce_mean()
pad_with = tf.reduce_mean(inp, axis=1)
print(pad_with)
padding = [pad_with for _ in range(max_len - inp_lenght)]
inputs[i] = tf.keras.layers.concatenate([padding, [inp]])
# inputs[i] = tf.reshape(
# tf.pad(inp, padding, mode="constant"), (None, max_len))
print(inputs)
return tf.keras.layers.Dot(axes=1)(inputs)
...
# Alternatively substituting the last few lines with:
pad_with = tf.reduce_mean(inp, axis=1, keepdims=True)
print(pad_with)
padding = tf.keras.layers.concatenate(
[pad_with for _ in range(max_len - inp_lenght)])
inputs[i] = tf.keras.layers.concatenate([padding, [inp]])
# inputs[i] = tf.reshape(
# tf.pad(inp, padding, mode="constant"), (None, max_len))
print(inputs)
return tf.keras.layers.Dot(axes=1)(inputs)
... and countless other permutations of attempts ...
Does anyone know a workaround or have any advice? (other than 'Don't try to do this.')?
In the parent folder of this module's package ...
Test to simulate a skip connection merging into the current layer:
from linearoneddot.linear_one_d_dot import Linear1dDot
x = tf.constant([1, 2, 3, 4, 5])
y = tf.constant([0, 9, 8])
inp1 = tf.keras.layers.Input(shape=3)
inp2 = tf.keras.layers.Input(shape=5)
xd = tf.keras.layers.Dense(3, "relu")(inp1)
yd = tf.keras.layers.Dense(5, 'elu')(inp2)
combined = Linear1dDot()([xd, yd]) # tf.keras.layers.Dot(axes=1)([xd, yd])
z = tf.keras.layers.Dense(2)(combined)
model = tf.keras.Model(inputs=[inp1, inp2], outputs=z) # outputs=z)
print(model([x, y]))
print(model([np.random.random((3, 3)), np.random.random((3, 5))]))
Does anyone know a workaround that will be able to get the mean of the shorter rank 1 tensor as a scalar, which I can then append / pad to the shorter tensor to a set intended langth (same length as the longer tensor).
Try this, hope this will work, Try to padd the shortest input with 1, and then concat it with the input then take the dot product, then finally subtract the extra ones which were added in the dot product...
class Linear1dDot(tf.keras.layers.Layer):
def __init__(self,**kwargs):
super(Linear1dDot, self).__init__()
def __call__(self, inputs):
_input1 , _input2 = inputs
_input1_shape = _input1.shape[1]
_input2_shape = _input2.shape[1]
difference = tf.math.abs(_input1_shape - _input2_shape)
padded_input = tf.ones(shape=(1,difference))
if _input1_shape > _input2_shape:
padded_tensor = tf.concat([_input2 ,padded_input],axis=1)
scaled_output = tf.keras.layers.Dot(axes=1)([padded_tensor, _input1])
scaled_output -= tf.reduce_sum(padded_input)
return scaled_output
else:
padded_tensor = tf.concat([_input1 , padded_input],axis=1)
scaled_output = tf.keras.layers.Dot(axes=1)([padded_tensor, _input2])
scaled_output -= tf.reduce_sum(padded_input)
return scaled_output
x = tf.constant([[1, 2, 3, 4, 5, 9]])
y = tf.constant([[0, 9, 8]])
inp1 = tf.keras.layers.Input(shape=3)
inp2 = tf.keras.layers.Input(shape=5)
xd = tf.keras.layers.Dense(5, "relu")(x)
yd = tf.keras.layers.Dense(3, 'elu')(y)
combined = Linear1dDot()([xd, yd]) # tf.keras.layers.Dot(axes=1)([xd, yd])
Output:
<tf.Tensor: shape=(1, 1), dtype=float32, numpy=array([[4.4694786]], dtype=float32)>

Neural network output issue

I built a neural network with tensorflow, here the code :
class DQNetwork:
def __init__(self, state_size, action_size, learning_rate, name='DQNetwork'):
self.state_size = state_size
self.action_size = action_size
self.learning_rate = learning_rate
with tf.variable_scope(name):
# We create the placeholders
self.inputs_ = tf.placeholder(tf.float32, shape=[state_size[1], state_size[0]], name="inputs")
self.actions_ = tf.placeholder(tf.float32, [None, self.action_size], name="actions_")
# Remember that target_Q is the R(s,a) + ymax Qhat(s', a')
self.target_Q = tf.placeholder(tf.float32, [None], name="target")
self.fc = tf.layers.dense(inputs = self.inputs_,
units = 50,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
activation = tf.nn.elu)
self.output = tf.layers.dense(inputs = self.fc,
units = self.action_size,
kernel_initializer=tf.contrib.layers.xavier_initializer(),
activation=None)
# Q is our predicted Q value.
self.Q = tf.reduce_sum(tf.multiply(self.output, self.actions_))
# The loss is the difference between our predicted Q_values and the Q_target
# Sum(Qtarget - Q)^2
self.loss = tf.reduce_mean(tf.square(self.target_Q - self.Q))
self.optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
But i have an issue with the output,
the output should normaly be at the same size than "action_size", and action_size value is 3
but i got an output like [[5][3]] instead of just [[3]] and i realy don't understand why...
This network got 2 dense layers, one with 50 perceptrons and the other with 3 perceptrons (= action_size).
state_size is format : [[9][5]]
If someone know why my output is two dimensions i will be very thankful
Your self.inputs_ placeholder has shape (5, 9). You perform the matmul(self.inputs_, fc1.w) operation in dense layer fc1 which has shape (9, 50) and it results in shape (5, 50). You then apply another dense layer with shape (50, 3) which results in output shape (5, 3).
The same schematically:
matmul(shape(5, 9), shape(9, 50)) ---> shape(5, 50) # output of 1st dense layer
matmul(shape(5, 50), shape(50, 3)) ---> shape(5, 3) # output of 2nd dense layer
Usually, the first dimension of the input placeholder represents batch size and the second dimension is the dimension of inputs feature vector. So for each sample in a batch you (batch size is 5 in your case) you get the output shape 3.
To get probabilities, use this:
import tensorflow as tf
import numpy as np
inputs_ = tf.placeholder(tf.float32, shape=(None, 9))
actions_ = tf.placeholder(tf.float32, shape=(None, 3))
fc = tf.layers.dense(inputs=inputs_, units=2)
output = tf.layers.dense(inputs=fc, units=3)
reduced = tf.reduce_mean(output, axis=0)
probs = tf.nn.softmax(reduced) # <--probabilities
inputs_vals = np.ones((5, 9))
actions_vals = np.ones((1, 3))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(probs.eval({inputs_:inputs_vals,
actions_:actions_vals}))
# [0.01858923 0.01566187 0.9657489 ]

TensorFlow: How to embed float sequences to fixed size vectors?

I am looking methods to embed variable length sequences with float values to fixed size vectors. The input formats as following:
[f1,f2,f3,f4]->[f1,f2,f3,f4]->[f1,f2,f3,f4]-> ... -> [f1,f2,f3,f4]
[f1,f2,f3,f4]->[f1,f2,f3,f4]->[f1,f2,f3,f4]->[f1,f2,f3,f4]-> ... -> [f1,f2,f3,f4]
...
[f1,f2,f3,f4]-> ... -> ->[f1,f2,f3,f4]
Each line is a variable length sequnece, with max length 60. Each unit in one sequece is a tuple of 4 float values. I have already paded zeros to fill all sequences to the same length.
The following architecture seems solve my problem if I use the output as the same as input, I need the thought vector in the center as the embedding for the sequences.
In tensorflow, I have found tow candidate methods tf.contrib.legacy_seq2seq.basic_rnn_seq2seq and tf.contrib.legacy_seq2seq.embedding_rnn_seq2seq.
However, these tow methos seems to be used to solve NLP problem, and the input must be discrete value for words.
So, is there another functions to solve my problems?
All you need is only an RNN, not the seq2seq model, since seq2seq goes with an additional decoder which is unecessary in your case.
An example code:
import numpy as np
import tensorflow as tf
from tensorflow.contrib import rnn
input_size = 4
max_length = 60
hidden_size=64
output_size = 4
x = tf.placeholder(tf.float32, shape=[None, max_length, input_size], name='x')
seqlen = tf.placeholder(tf.int64, shape=[None], name='seqlen')
lstm_cell = rnn.BasicLSTMCell(hidden_size, forget_bias=1.0)
outputs, states = tf.nn.dynamic_rnn(cell=lstm_cell, inputs=x, sequence_length=seqlen, dtype=tf.float32)
encoded_states = states[-1]
W = tf.get_variable(
name='W',
shape=[hidden_size, output_size],
dtype=tf.float32,
initializer=tf.random_normal_initializer())
b = tf.get_variable(
name='b',
shape=[output_size],
dtype=tf.float32,
initializer=tf.random_normal_initializer())
z = tf.matmul(encoded_states, W) + b
results = tf.sigmoid(z)
###########################
## cost computing and training components goes here
# e.g.
# targets = tf.placeholder(tf.float32, shape=[None, input_size], name='targets')
# cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=targets, logits=z))
# optimizer = tf.train.AdamOptimizer(learning_rate=0.1).minimize(cost)
###############################
init = tf.global_variables_initializer()
batch_size = 4
data_in = np.zeros((batch_size, max_length, input_size), dtype='float32')
data_in[0, :4, :] = np.random.rand(4, input_size)
data_in[1, :6, :] = np.random.rand(6, input_size)
data_in[2, :20, :] = np.random.rand(20, input_size)
data_in[3, :, :] = np.random.rand(60, input_size)
data_len = np.asarray([4, 6, 20, 60], dtype='int64')
with tf.Session() as sess:
sess.run(init)
#########################
# training process goes here
#########################
res = sess.run(results,
feed_dict={
x: data_in,
seqlen: data_len})
print(res)
To encode sequence to a fixed length vector you typically use recurrent neural networks (RNNs) or convolutional neural networks (CNNs).
If you use a recurrent neural network you can use the output at the last time step (last element in your sequence). This corresponds to the thought vector in your question. Have a look at tf.dynamic_rnn. dynamic_rnn requires you to specify to type of RNN cell you want to use. tf.contrib.rnn.LSTMCell and tf.contrib.rnn.GRUCell are most common.
If you want to use CNNs you need to use 1 dimensional convolutions. To build CNNs you need tf.layers.conv1d and tf.layers.max_pooling1d
I have found a solution to my problem, using the following architecture,
,
The LSTMs layer below encode the series x1,x2,...,xn. The last output, the green one, is duplicated to the same count as the input for the decoding LSTM layers above. The tensorflow code is as following
series_input = tf.placeholder(tf.float32, [None, conf.max_series, conf.series_feature_num])
print("Encode input Shape", series_input.get_shape())
# encoding layer
encode_cell = tf.contrib.rnn.MultiRNNCell(
[tf.contrib.rnn.BasicLSTMCell(conf.rnn_hidden_num, reuse=False) for _ in range(conf.rnn_layer_num)]
)
encode_output, _ = tf.nn.dynamic_rnn(encode_cell, series_input, dtype=tf.float32, scope='encode')
print("Encode output Shape", encode_output.get_shape())
# last output
encode_output = tf.transpose(encode_output, [1, 0, 2])
last = tf.gather(encode_output, int(encode_output.get_shape()[0]) - 1)
# duplite the last output of the encoding layer
decoder_input = tf.stack([last for _ in range(conf.max_series)], axis=1)
print("Decoder input shape", decoder_input.get_shape())
# decoding layer
decode_cell = tf.contrib.rnn.MultiRNNCell(
[tf.contrib.rnn.BasicLSTMCell(conf.series_feature_num, reuse=False) for _ in range(conf.rnn_layer_num)]
)
decode_output, _ = tf.nn.dynamic_rnn(decode_cell, decoder_input, dtype=tf.float32, scope='decode')
print("Decode output", decode_output.get_shape())
# Loss Function
loss = tf.losses.mean_squared_error(labels=series_input, predictions=decode_output)
print("Loss", loss)

How to have a variable number of hidden layers in Tensorflow?

Suppose that we want to try sort of hidden layer numbers and their size. How can we do in Tensorflow?
Consider following example to make it clear:
# Create a Neural Network Layer
def fc_layer(input, size_in, size_out):
w = tf.Variable(tf.truncated_normal([None, size_in, size_out]), name="W")
b = tf.Variable(tf.constant(0.1, shape=[size_out]))
act = tf.matmul(input, w) + b
return act
n_hiddenlayers=3 #number of hidden layers
hidden_layer=tf.placeholder(tf.float32,[n_hiddenlayers, None, None])
#considering 4 as size of inputs and outputs of all layers
sizeInpOut=4
for i in range(n_hiddenlayers):
hidden_layer(i,:,:)= tf.nn.sigmoid(fc_layer(X, sizeInpOut, sizeInpOut))
It results in an error about hidden_layer(i,:,:)= ...
In the other word, I need tensor of tensors.
I did this just using a list to hold the different layers as follows, seemed to work fine.
# inputs
x_size=2 # first layer nodes
y_size=1 # final layer nodes
h_size=[3,4,3] # variable length list of hidden layer nodes
# set up input and output
X = tf.placeholder(tf.float32, [None,x_size])
y_true = tf.placeholder(tf.float32, [None,y_size])
# set up parameters
W = []
b = []
layer = []
# first layer
W.append(tf.Variable(tf.random_normal([x_size, h_size[0]], stddev=0.1)))
b.append(tf.Variable(tf.zeros([h_size[0]])))
# add hidden layers (variable number)
for i in range(1,len(h_size)):
W.append(tf.Variable(tf.random_normal([h_size[i-1], h_size[i]], stddev=0.1)))
b.append(tf.Variable(tf.zeros([h_size[i]])))
# add final layer
W.append(tf.Variable(tf.random_normal([h_size[-1], y_size], stddev=0.1)))
b.append(tf.Variable(tf.zeros([y_size])))
# define model
layer.append(tf.nn.relu(tf.matmul(X, W[0]) + b[0]))
for i in range(1,len(h_size)):
layer.append(tf.nn.relu(tf.matmul(layer[i-1], W[i]) + b[i]))
if self.type_in == "classification":
y_pred = tf.nn.sigmoid(tf.matmul(layer[-1], W[-1]) + b[-1])
loss = tf.reduce_mean(-1. * ((y_true * tf.log(y_pred)) + ((1.-y_true) * tf.log(1.-y_pred))))
correct_prediction = tf.equal(tf.round(y_pred), tf.round(y_true))
metric = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
metric_name = "accuracy"
Not a direct answer, but you could consider using tensorflow-slim. It's one of the many APIs distributed as part of tensorflow. It is lightweight and compatible with defining all the variables by hand as you are doing. If you look at the webpage I linked, slim.repeat and slim.stack allow you to create multiple layers of different widths in one line. To make things more complicated: I think part of slim is now the module called layers in tensorflow.
But maybe you just want to play directly with tf variables to understand how it works and not use a higher level API until later.
In the code you posted, since you want to create three layers, you should call fc_layer three times, but you only call it once. By the way this implies that w and b will be created three different times, as different variables with different internal tf names. And it is what you want.
You should have some for-loop or while-loop which iterates three times. Note that the output tensor at the end of the loop will become the input tensor in the next iteration. The initial input is the true input and the very last output is the true output.
Another issue with your code is that the non-linearity (the sigmoid) should be at the end of fc_layer. You want a non-linear operation between all layers.
EDIT: some code of what would usually be done:
import tensorflow as tf
input_size = 10
output_size = 4
layer_sizes = [7, 6, 5]
def fc_layer(input, size, layer_name):
in_size = input.shape.as_list()[1]
w = tf.Variable(tf.truncated_normal([in_size, size]),
name="W" + layer_name)
b = tf.Variable(tf.constant(0.1, shape=[size]),
name="b" + layer_name)
act = tf.nn.sigmoid(tf.matmul(input, w) + b)
return act
input = tf.placeholder(tf.float32, [None, input_size])
# output will be the intermediate activations successively and in the end the
# final activations (output).
output = input
for i, size in enumerate(layer_sizes + [output_size]):
output = fc_layer(output , size, layer_name=str(i + 1))
print("final output var: " + str(output))
print("All vars in the tensorflow graph:")
for var in tf.global_variables():
print(var)
With output:
final output: Tensor("Sigmoid_3:0", shape=(?, 4), dtype=float32)
<tf.Variable 'W1:0' shape=(10, 7) dtype=float32_ref>
<tf.Variable 'b1:0' shape=(7,) dtype=float32_ref>
<tf.Variable 'W2:0' shape=(7, 6) dtype=float32_ref>
<tf.Variable 'b2:0' shape=(6,) dtype=float32_ref>
<tf.Variable 'W3:0' shape=(6, 5) dtype=float32_ref>
<tf.Variable 'b3:0' shape=(5,) dtype=float32_ref>
<tf.Variable 'W4:0' shape=(5, 4) dtype=float32_ref>
<tf.Variable 'b4:0' shape=(4,) dtype=float32_ref>
In your code your were using the same name for w, which creates conflicts since different variables with the same name would be created. I fixed it in my code, but even if you use the same name tensorflow is intelligent enough and will rename each variable to a unique name by adding an underscore and a number.
EDIT: here is what I think you wanted to do:
import tensorflow as tf
hidden_size = 4
input_size = hidden_size # equality required!
output_size = hidden_size # equality required!
n_hidden = 3
meta_tensor = tf.Variable(tf.truncated_normal([n_hidden, hidden_size, hidden_size]),
name="meta")
def fc_layer(input, i_layer):
w = meta_tensor[i_layer]
# more verbose: w = tf.slice(meta_tensor, begin=[i_layer, 0, 0], size=[1, hidden_size, hidden_size])[0]
b = tf.Variable(tf.constant(0.1, shape=[hidden_size]),
name="b" + str(i_layer))
act = tf.nn.sigmoid(tf.matmul(input, w) + b)
return act
input = tf.placeholder(tf.float32, [None, input_size])
# output will be the intermediate activations successively and in the end the
# final activations (output).
output = input
for i_layer in range(0, n_hidden):
output = fc_layer(output, i_layer)
print("final output var: " + str(output))
print("All vars in the tensorflow graph:")
for var in tf.global_variables():
print(var)
With output:
final output var: Tensor("Sigmoid_2:0", shape=(?, 4), dtype=float32)
All vars in the tensorflow graph:
<tf.Variable 'meta:0' shape=(3, 4, 4) dtype=float32_ref>
<tf.Variable 'b0:0' shape=(4,) dtype=float32_ref>
<tf.Variable 'b1:0' shape=(4,) dtype=float32_ref>
<tf.Variable 'b2:0' shape=(4,) dtype=float32_ref>
As I said this is not standard. While coding it I also realized that it is quite limiting since all hidden layers must have the same size. A meta-tensor can be used to store many matrices, but those must all have the same dimensions. So you could not do like I did in the example above where the hidden first layer has size 7 and the next one size 6 and the final one size 5, before an output of size 4.

Using Estimator for building an LSTM network

I am trying to build an LSTM network using an Estimator. My data looks like
X = [[1,2,3], [2,3,4], ... , [98,99,100]]
y = [2, 3, ... , 99]
I am using an Estimator:
regressor = learn.Estimator(model_fn=lstm_model,
params=model_params,
)
where the lstm_model function is
def lstm_model(features, targets, mode, params):
def lstm_cells(layers):
if isinstance(layers[0], dict):
return [tf.nn.rnn_cell.BasicLSTMCell(layer['steps'],state_is_tuple=True) for layer in layers]
return [tf.nn.rnn_cell.BasicLSTMCell(steps, state_is_tuple=True) for steps in layers]
stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cells(params['rnn_layers']), state_is_tuple=True)
output, layers = tf.nn.rnn(stacked_lstm, [features], dtype=tf.float32)
return learn.models.linear_regression(output, targets)
and params are
model_params = {
'steps': 1000,
'learning_rate': 0.03,
'batch_size': 24,
'time_steps': 3,
'rnn_layers': [{'steps': 3}],
'dense_layers': [10, 10]
}
and then I do the fitting
regressor.fit(X, y)
The issue I am facing is
output, layers = tf.nn.rnn(stacked_lstm, [features], dtype=tf.float32)
requires a sequence but I am not sure how to split my features to into list of tensors. The shape of features inside the lstm_model function is (?, 3)
I have two questions, how do I do the training in batches? and how do I split 'features' so
output, layers = tf.nn.rnn(stacked_lstm, [features], dtype=tf.float32)
doesn't throw and error. The error I am getting is
raise TypeError("%s that don't all match." % prefix)
TypeError: Tensors in list passed to 'values' of 'Concat' Op have types [float64, float32] that don't all match.
I am using tensorflow 0.12
I had to set the shape for features to be
(batch_size, time_step, 1) or (None, time_step, 1) and then unstack the features to go in the rnn. Unstacking the features in the "time_step" so you have a list of tensors with the size of time steps and the shape for each tensor should be (None, 1) or (batch_size, 1)