Sensor outputs 'around 65535' instead of 'around zero' - gyroscope

I am working with L3G4200D which a gyroscope and have interfaced it with TM4C123GXL board. I am getting the correct output for z-axis, but for both x and y-axis, I am getting something close to 65535 (when the sensor is held stable) and few outputs in between tens of outputs are correct (close to zero). And when I move the sensor the outputs of x and y-axis does go to few hundreds. Can somebody tell me what is happening and how to fix this?

It must be a 16-bit signed number. Therefore 65535 or 0xffff is actually -1, which is still close to 0.
Parse it as a signed 16 bit integer, instead of unsigned.

Related

Simple QPSK transmiter, large sidelobes pulsation

I have a simple flowgraph for QPSK transmitter with USRP.
After execution, there is lage sidelobes, that pulsate.
During the periods of large sidelobes, there is a drop in amplutude of main lobe.
There is no such pulsations if I make similar transmitter with Matlab.
I suscpect discontinues in sorce.
Comments and advice are appreciated.
Your pool of random data is far too short; you'll see data periodicity in spectrum very quickly; it might be that this is exactly what happens. So, try with num_samples 2**20 instead.
You can observe your transmit spectrum yourself before even transmitting it: use the Qt GUI frequency sink or waterfall sink with an FFT length that corresponds to the FFT length you use in gqrx.
Your sample rate is at the least end of all possible sampling rates. Here, the roll-off of the interpolation filters inside the USRP will definitely show. Don't do that to yourself. Use sps = 16, samp_rate = 1e6 instead.
Make sure you're not getting any underruns in your tranmitter, nor overruns in your receiver. If that happens at these incredibly low sampling rates, something is wrong with your computer setup
Changes make no difference. The following is # 2**20 number of samples, 1 MHz sample rate and 20 samples per symbol. There is no underrun.
# 5 Mhz sample rate I start receiving underrun.
I found the problem and a solution.
The problem is that the level of the signal after modulator is too strong for the USRP input. After modulator the abs value of the signal reach 9. I don't know the maximum level of the signal that USRP expects. I presume something like 1 peak to peak
The solution is to restrict the level by multiplication with a constant. With constant=0.5, there is still distortions. Value of 0.2 is ok.
Here is the new flowgraph:

Why does my simulation compute only a certain number of digits before only changing the power magnitude?

I am using another person's code to try and demonstrate this problem in physics:
a large mass M collides with a smaller mass m, which then moves moves to rebound off a wall returning to collide with the larger mass M. This process repeats until larger mass has turned and its velocity sign flips. If the mass of the larger block is 16*100^n (where n is an integer) times more massive than the first block the number of collisions between the large block and the small block compute the (n+1) digits of pi. For example: when the block is 1600 times bigger there are 31 collisions. If the block is 16000000 there are be 3141 collisions.
I did my code in vPython and it works, but only until a certain amount. I was able to get 31415 collisions when the original code. When I make N=5 the simulation completely fails and the screen turns black. Apparently this is because the time step is not small enough. So I tried to make it smaller and see if it can compute more numbers and it does. I was able to count 314159 collisions by changing the time step to 0.00001. But then I input N=6 and again it collapses. So I try to increase the time step to 0.000001 and it works but only gives me the number 3.14159e+6 without the extra digit of pi.
enter image description here
Can someone please tell why this is. Why do I not get the next digit. Is my computer not strong enough. I do not need to actually fix this problem, that is not the point, I just need to understand the limitations of my simulation and computer and why it cannot compute the next digit.

How to slow down a file source in GNU Radio?

I'm attempting to unpack bytes from an input file in GNU Radio Companion into a binary bitstream. My problem is that the Unpack K Bits block works at the same sample rate as the file source. So by the time the first bit of byte 1 is clocked out, byte 2 has already been loaded. How do I either slow down the file source or speed up the Unpack K Bits block? Is there a way I can tell GNU Radio Companion to repeat each byte from the file source 8 times?
Note that "after pack" is displaying 4 times as much data as "before pack".
My problem is that the Unpack K Bits block works at the same sample rate as the file source
No it doesn't. Unpack K Bits is an interpolator block. In your case the interpolation is 8. For every bytes 8 new bytes are produced.
The result is right, but the time scale of your sink is wrong. You have to change the sampling rate at the second GUI Time Sink to fit the true sampling rate of the flowgraph after the Unpack K Bits.
So instead of 32e3 it should be 8*32e3.
Manos' answer is very good, but I want to add to this:
This is a common misunderstanding for people that just got in touch with doing digital signal processing down at the sample layer:
GNU Radio doesn't have a notion of sampling rate itself. The term sampling rate is only used by certain blocks to e.g. calculate the period of a sine (in the case of the signal source: Period = f_signal/f_sample), or to calculate times or frequencies that are written on display axes (like in your case).
"Slowing down" means "making the computer process samples slower", but doesn't change the signal.
All you need to do is match what you want the displaying sink to show as time units with what you configure it to do.

How do I keep time without cumulative error?

How can you keep track of time in a simple embedded system, given that you need a fixed-point representation of the time in seconds, and that your time between ticks is not precisely expressable in that fixed-point format? How do you avoid cumulative errors in those circumstances.
This question is a reaction to this article on slashdot.
0.1 seconds cannot be neatly expressed as a binary fixed-point number, just as 1/3 cannot be neatly expressed as a decimal fixed-point number. Any binary fixed-point representation has a small error. For example, if there are 8 binary bits after the point (ie using an integer value scaled by 256), 0.1 times 256 is 25.6, which will be rounded to either 25 or 26, resulting in an error in the order of -2.3% or +1.6% respectively. Adding more binary bits after the point reduces the scale of this error, but cannot eliminate it.
With repeated addition, the error gradually accumulates.
How can this be avoided?
One approach is not to try to compute the time by repeated addition of this 0.1 seconds constant, but to keep a simple integer clock-tick count. This tick count can be converted to a fixed-point time in seconds as needed, usually using a multiplication followed by a division. Given sufficient bits in the intermediate representations, this approach allows for any rational scaling, and doesn't accumulate errors.
For example, if the current tick count is 1024, we can get the current time (in fixed point with 8 bits after the point) by multiplying that by 256, then dividing by 10 - or equivalently, by multiplying by 128 then dividing by 5. Either way, there is an error (the remainder in the division), but the error is bounded since the remainder is always less than 5. There is no cumulative error.
Another approach might be useful in contexts where integer multiplication and division is considered too costly (which should be getting pretty rare these days). It borrows an idea from Bresenhams line drawing algorithm. You keep the current time in fixed point (rather than a tick count), but you also keep an error term. When the error term grows too large, you apply a correction to the time value, thus preventing the error from accumulating.
In the 8-bits-after-the-point example, the representation of 0.1 seconds is 25 (256/10) with an error term (remainder) of 6. At each step, we add 6 to our error accumulator. Based on this so far, the first two steps are...
Clock Seconds Error
----- ------- -----
25 0.0977 6
50 0.1953 12
At the second step, the error value has overflowed - exceeded 10. Therefore, we increment the clock and subtract 10 from the error. This happens every time the error value reaches 10 or higher.
Therefore, the actual sequence is...
Clock Seconds Error Overflowed?
----- ------- ----- -----------
25 0.0977 6
51 0.1992 2 Yes
76 0.2969 8
102 0.3984 4 Yes
There is almost always an error (the clock is precisely correct only when the error value is zero), but the error is bounded by a small constant. There is no cumulative error in the clock value.
A hardware-only solution is to arrange for the hardware clock ticks to run very slightly fast - precisely fast enough to compensate for cumulative losses caused by the rounding-down of the repeatedly added tick-duration value. That is, adjust the hardware clock tick speed so that the fixed-point tick-duration value is precisely correct.
This only works if there is only one fixed-point format used for the clock.
Why not have 0.1 sec counter and every ten times increment your seconds counter, and wrap the 0.1 counter back to 0?
In this particular instance, I would have simply kept the time count in tenths of a seconds (or milliseconds, or whatever time scale is appropriate for the application). I do this all the time in small systems or control systems.
So a time value of 100 hours would be stored as 3_600_000 ticks - zero error (other than error that might be introduced by hardware).
The problems that are introduced by this simple technique are:
you need to account for the larger numbers. For example, you may have to use a 64-bit counter rather than a 32-bit counter
all your calculations need to be aware of the units used - this is the area that is most likely going to cause problems. I try to help with this problem by using time counters with a uniform unit. For example, this particular counter needs only 10 ticks per second, but another counter might need millisecond precision. In that case, I'd consider making both counters millisecond precision so they use the same units even though one doesn't really need that precision.
I've also had to play some other tricks this with timers that aren't 'regular'. For example, I worked on a device that required a data acquisition to occur 300 times a second. The hardware timer fired once a millisecond. There's no way to scale the millisecond timer to get exactly 1/300th of a second units. So We had to have logic that would perform the data acquisition on every 3, 3, and 4 ticks to keep the acquisition from drifting.
If you need to deal with hardware time error, then you need more than one time source and use them together to keep the overall time in sync. Depending on your needs this can be simple or pretty complex.
Something I've seen implemented in the past: the increment value can't be expressed precisely in the fixed-point format, but it can be expressed as a fraction. (This is similar to the "keep track of an error value" solution.)
Actually in this case the problem was slightly different, but conceptually similar—the problem wasn't a fixed-point representation as such, but deriving a timer from a clock source that wasn't a perfect multiple. We had a hardware clock that ticks at 32,768 Hz (common for a watch crystal based low-power timer). We wanted a millisecond timer from it.
The millisecond timer should increment every 32.768 hardware ticks. The first approximation is to increment every 33 hardware ticks, for a nominal 0.7% error. But, noting that 0.768 is 768/1000, or 96/125, you can do this:
Keep a variable for "fractional" value. Start it on 0.
wait for the hardware timer to count 32.
While true:
increment the millisecond timer.
Add 96 to the "fractional" value.
If the "fractional" value is >= 125, subtract 125 from it and wait for the hardware timer to count 33.
Otherwise (the "fractional" value is < 125), wait for the hardware timer to count 32.
There will be some short term "jitter" on the millisecond counter (32 vs 33 hardware ticks) but the long-term average will be 32.768 hardware ticks.

VB FFT - stuck understanding relationship of results to frequency

Trying to understand an fft (Fast Fourier Transform) routine I'm using (stealing)(recycling)
Input is an array of 512 data points which are a sample waveform.
Test data is generated into this array. fft transforms this array into frequency domain.
Trying to understand relationship between freq, period, sample rate and position in fft array. I'll illustrate with examples:
========================================
Sample rate is 1000 samples/s.
Generate a set of samples at 10Hz.
Input array has peak values at arr(28), arr(128), arr(228) ...
period = 100 sample points
peak value in fft array is at index 6 (excluding a huge value at 0)
========================================
Sample rate is 8000 samples/s
Generate set of samples at 440Hz
Input array peak values include arr(7), arr(25), arr(43), arr(61) ...
period = 18 sample points
peak value in fft array is at index 29 (excluding a huge value at 0)
========================================
How do I relate the index of the peak in the fft array to frequency ?
If you ignore the imaginary part, the frequency distribution is linear across bins:
Frequency#i = (Sampling rate/2)*(i/Nbins).
So for your first example, assumming you had 256 bins, the largest bin corresponds to a frequency of 1000/2 * 6/256 = 11.7 Hz.
Since your input was 10Hz, I'd guess that bin 5 (9.7Hz) also had a big component.
To get better accuracy, you need to take more samples, to get smaller bins.
Your second example gives 8000/2*29/256 = 453Hz. Again, close, but you need more bins.
Your resolution here is only 4000/256 = 15.6Hz.
It would be helpful if you were to provide your sample dataset.
My guess would be that you have what are called sampling artifacts. The strong signal at DC ( frequency 0 ) suggests that this is the case.
You should always ensure that the average value in your input data is zero - find the average and subtract it from each sample point before invoking the fft is good practice.
Along the same lines, you have to be careful about the sampling window artifact. It is important that the first and last data point are close to zero because otherwise the "step" from outside to inside the sampling window has the effect of injecting a whole lot of energy at different frequencies.
The bottom line is that doing an fft analysis requires more care than simply recycling a fft routine found somewhere.
Here are the first 100 sample points of a 10Hz signal as described in the question, massaged to avoid sampling artifacts
> sinx[1:100]
[1] 0.000000e+00 6.279052e-02 1.253332e-01 1.873813e-01 2.486899e-01 3.090170e-01 3.681246e-01 4.257793e-01 4.817537e-01 5.358268e-01
[11] 5.877853e-01 6.374240e-01 6.845471e-01 7.289686e-01 7.705132e-01 8.090170e-01 8.443279e-01 8.763067e-01 9.048271e-01 9.297765e-01
[21] 9.510565e-01 9.685832e-01 9.822873e-01 9.921147e-01 9.980267e-01 1.000000e+00 9.980267e-01 9.921147e-01 9.822873e-01 9.685832e-01
[31] 9.510565e-01 9.297765e-01 9.048271e-01 8.763067e-01 8.443279e-01 8.090170e-01 7.705132e-01 7.289686e-01 6.845471e-01 6.374240e-01
[41] 5.877853e-01 5.358268e-01 4.817537e-01 4.257793e-01 3.681246e-01 3.090170e-01 2.486899e-01 1.873813e-01 1.253332e-01 6.279052e-02
[51] -2.542075e-15 -6.279052e-02 -1.253332e-01 -1.873813e-01 -2.486899e-01 -3.090170e-01 -3.681246e-01 -4.257793e-01 -4.817537e-01 -5.358268e-01
[61] -5.877853e-01 -6.374240e-01 -6.845471e-01 -7.289686e-01 -7.705132e-01 -8.090170e-01 -8.443279e-01 -8.763067e-01 -9.048271e-01 -9.297765e-01
[71] -9.510565e-01 -9.685832e-01 -9.822873e-01 -9.921147e-01 -9.980267e-01 -1.000000e+00 -9.980267e-01 -9.921147e-01 -9.822873e-01 -9.685832e-01
[81] -9.510565e-01 -9.297765e-01 -9.048271e-01 -8.763067e-01 -8.443279e-01 -8.090170e-01 -7.705132e-01 -7.289686e-01 -6.845471e-01 -6.374240e-01
[91] -5.877853e-01 -5.358268e-01 -4.817537e-01 -4.257793e-01 -3.681246e-01 -3.090170e-01 -2.486899e-01 -1.873813e-01 -1.253332e-01 -6.279052e-02
And here is the resulting absolute values of the fft frequency domain
[1] 7.160038e-13 1.008741e-01 2.080408e-01 3.291725e-01 4.753899e-01 6.653660e-01 9.352601e-01 1.368212e+00 2.211653e+00 4.691243e+00 5.001674e+02
[12] 5.293086e+00 2.742218e+00 1.891330e+00 1.462830e+00 1.203175e+00 1.028079e+00 9.014559e-01 8.052577e-01 7.294489e-01
I'm a little rusty too on math and signal processing but with the additional info I can give it a shot.
If you want to know the signal energy per bin you need the magnitude of the complex output. So just looking at the real output is not enough. Even when the input is only real numbers. For every bin the magnitude of the output is sqrt(real^2 + imag^2), just like pythagoras :-)
bins 0 to 449 are positive frequencies from 0 Hz to 500 Hz. bins 500 to 1000 are negative frequencies and should be the same as the positive for a real signal. If you process one buffer every second frequencies and array indices line up nicely. So the peak at index 6 corresponds with 6Hz so that's a bit strange. This might be because you're only looking at the real output data and the real and imaginary data combine to give an expected peak at index 10. The frequencies should map linearly to the bins.
The peaks at 0 indicates a DC offset.
It's been some time since I've done FFT's but here's what I remember
FFT usually takes complex numbers as input and output. So I'm not really sure how the real and imaginary part of the input and output map to the arrays.
I don't really understand what you're doing. In the first example you say you process sample buffers at 10Hz for a sample rate of 1000 Hz? So you should have 10 buffers per second with 100 samples each. I don't get how your input array can be at least 228 samples long.
Usually the first half of the output buffer are frequency bins from 0 frequency (=dc offset) to 1/2 sample rate. and the 2nd half are negative frequencies. if your input is only real data with 0 for the imaginary signal positive and negative frequencies are the same. The relationship of real/imaginary signal on the output contains phase information from your input signal.
The frequency for bin i is i * (samplerate / n), where n is the number of samples in the FFT's input window.
If you're handling audio, since pitch is proportional to log of frequency, the pitch resolution of the bins increases as the frequency does -- it's hard to resolve low frequency signals accurately. To do so you need to use larger FFT windows, which reduces time resolution. There is a tradeoff of frequency against time resolution for a given sample rate.
You mention a bin with a large value at 0 -- this is the bin with frequency 0, i.e. the DC component. If this is large, then presumably your values are generally positive. Bin n/2 (in your case 256) is the Nyquist frequency, half the sample rate, which is the highest frequency that can be resolved in the sampled signal at this rate.
If the signal is real, then bins n/2+1 to n-1 will contain the complex conjugates of bins n/2-1 to 1, respectively. The DC value only appears once.
The samples are, as others have said, equally spaced in the frequency domain (not logarithmic).
For example 1, you should get this:
alt text http://home.comcast.net/~kootsoop/images/SINE1.jpg
For the other example you should get
alt text http://home.comcast.net/~kootsoop/images/SINE2.jpg
So your answers both appear to be correct regarding the peak location.
What I'm not getting is the large DC component. Are you sure you are generating a sine wave as the input? Does the input go negative? For a sinewave, the DC should be close to zero provided you get enough cycles.
Another avenue is to craft a Goertzel's Algorithm of each note center frequency you are looking for.
Once you get one implementation of the algorithm working you can make it such that it takes parameters to set it's center frequency. With that you could easily run 88 of them or what ever you need in a collection and scan for the peak value.
The Goertzel Algorithm is basically a single bin FFT. Using this method you can place your bins logarithmically as musical notes naturally go.
Some pseudo code from Wikipedia:
s_prev = 0
s_prev2 = 0
coeff = 2*cos(2*PI*normalized_frequency);
for each sample, x[n],
s = x[n] + coeff*s_prev - s_prev2;
s_prev2 = s_prev;
s_prev = s;
end
power = s_prev2*s_prev2 + s_prev*s_prev - coeff*s_prev2*s_prev;
The two variables representing the previous two samples are maintained for the next iteration. This can be then used in a streaming application. I thinks perhaps the power calculation should be inside the loop as well. (However it is not depicted as such in the Wiki article.)
In the tone detection case there would be 88 different coeficients, 88 pairs of previous samples and would result in 88 power output samples indicating the relative level in that frequency bin.
WaveyDavey says that he's capturing sound from a mic, thru the audio hardware of his computer, BUT that his results are not zero-centered. This sounds like a problem with the hardware. It SHOULD BE zero-centered.
When the room is quiet, the stream of values coming from the sound API should be very close to 0 amplitude, with slight +- variations for ambient noise. If a vibratory sound is present in the room (e.g. a piano, a flute, a voice) the data stream should show a fundamentally sinusoidal-based wave that goes both positive and negative, and averages near zero. If this is not the case, the system has some funk going on!
-Rick