VB FFT - stuck understanding relationship of results to frequency - vba

Trying to understand an fft (Fast Fourier Transform) routine I'm using (stealing)(recycling)
Input is an array of 512 data points which are a sample waveform.
Test data is generated into this array. fft transforms this array into frequency domain.
Trying to understand relationship between freq, period, sample rate and position in fft array. I'll illustrate with examples:
========================================
Sample rate is 1000 samples/s.
Generate a set of samples at 10Hz.
Input array has peak values at arr(28), arr(128), arr(228) ...
period = 100 sample points
peak value in fft array is at index 6 (excluding a huge value at 0)
========================================
Sample rate is 8000 samples/s
Generate set of samples at 440Hz
Input array peak values include arr(7), arr(25), arr(43), arr(61) ...
period = 18 sample points
peak value in fft array is at index 29 (excluding a huge value at 0)
========================================
How do I relate the index of the peak in the fft array to frequency ?

If you ignore the imaginary part, the frequency distribution is linear across bins:
Frequency#i = (Sampling rate/2)*(i/Nbins).
So for your first example, assumming you had 256 bins, the largest bin corresponds to a frequency of 1000/2 * 6/256 = 11.7 Hz.
Since your input was 10Hz, I'd guess that bin 5 (9.7Hz) also had a big component.
To get better accuracy, you need to take more samples, to get smaller bins.
Your second example gives 8000/2*29/256 = 453Hz. Again, close, but you need more bins.
Your resolution here is only 4000/256 = 15.6Hz.

It would be helpful if you were to provide your sample dataset.
My guess would be that you have what are called sampling artifacts. The strong signal at DC ( frequency 0 ) suggests that this is the case.
You should always ensure that the average value in your input data is zero - find the average and subtract it from each sample point before invoking the fft is good practice.
Along the same lines, you have to be careful about the sampling window artifact. It is important that the first and last data point are close to zero because otherwise the "step" from outside to inside the sampling window has the effect of injecting a whole lot of energy at different frequencies.
The bottom line is that doing an fft analysis requires more care than simply recycling a fft routine found somewhere.
Here are the first 100 sample points of a 10Hz signal as described in the question, massaged to avoid sampling artifacts
> sinx[1:100]
[1] 0.000000e+00 6.279052e-02 1.253332e-01 1.873813e-01 2.486899e-01 3.090170e-01 3.681246e-01 4.257793e-01 4.817537e-01 5.358268e-01
[11] 5.877853e-01 6.374240e-01 6.845471e-01 7.289686e-01 7.705132e-01 8.090170e-01 8.443279e-01 8.763067e-01 9.048271e-01 9.297765e-01
[21] 9.510565e-01 9.685832e-01 9.822873e-01 9.921147e-01 9.980267e-01 1.000000e+00 9.980267e-01 9.921147e-01 9.822873e-01 9.685832e-01
[31] 9.510565e-01 9.297765e-01 9.048271e-01 8.763067e-01 8.443279e-01 8.090170e-01 7.705132e-01 7.289686e-01 6.845471e-01 6.374240e-01
[41] 5.877853e-01 5.358268e-01 4.817537e-01 4.257793e-01 3.681246e-01 3.090170e-01 2.486899e-01 1.873813e-01 1.253332e-01 6.279052e-02
[51] -2.542075e-15 -6.279052e-02 -1.253332e-01 -1.873813e-01 -2.486899e-01 -3.090170e-01 -3.681246e-01 -4.257793e-01 -4.817537e-01 -5.358268e-01
[61] -5.877853e-01 -6.374240e-01 -6.845471e-01 -7.289686e-01 -7.705132e-01 -8.090170e-01 -8.443279e-01 -8.763067e-01 -9.048271e-01 -9.297765e-01
[71] -9.510565e-01 -9.685832e-01 -9.822873e-01 -9.921147e-01 -9.980267e-01 -1.000000e+00 -9.980267e-01 -9.921147e-01 -9.822873e-01 -9.685832e-01
[81] -9.510565e-01 -9.297765e-01 -9.048271e-01 -8.763067e-01 -8.443279e-01 -8.090170e-01 -7.705132e-01 -7.289686e-01 -6.845471e-01 -6.374240e-01
[91] -5.877853e-01 -5.358268e-01 -4.817537e-01 -4.257793e-01 -3.681246e-01 -3.090170e-01 -2.486899e-01 -1.873813e-01 -1.253332e-01 -6.279052e-02
And here is the resulting absolute values of the fft frequency domain
[1] 7.160038e-13 1.008741e-01 2.080408e-01 3.291725e-01 4.753899e-01 6.653660e-01 9.352601e-01 1.368212e+00 2.211653e+00 4.691243e+00 5.001674e+02
[12] 5.293086e+00 2.742218e+00 1.891330e+00 1.462830e+00 1.203175e+00 1.028079e+00 9.014559e-01 8.052577e-01 7.294489e-01

I'm a little rusty too on math and signal processing but with the additional info I can give it a shot.
If you want to know the signal energy per bin you need the magnitude of the complex output. So just looking at the real output is not enough. Even when the input is only real numbers. For every bin the magnitude of the output is sqrt(real^2 + imag^2), just like pythagoras :-)
bins 0 to 449 are positive frequencies from 0 Hz to 500 Hz. bins 500 to 1000 are negative frequencies and should be the same as the positive for a real signal. If you process one buffer every second frequencies and array indices line up nicely. So the peak at index 6 corresponds with 6Hz so that's a bit strange. This might be because you're only looking at the real output data and the real and imaginary data combine to give an expected peak at index 10. The frequencies should map linearly to the bins.
The peaks at 0 indicates a DC offset.

It's been some time since I've done FFT's but here's what I remember
FFT usually takes complex numbers as input and output. So I'm not really sure how the real and imaginary part of the input and output map to the arrays.
I don't really understand what you're doing. In the first example you say you process sample buffers at 10Hz for a sample rate of 1000 Hz? So you should have 10 buffers per second with 100 samples each. I don't get how your input array can be at least 228 samples long.
Usually the first half of the output buffer are frequency bins from 0 frequency (=dc offset) to 1/2 sample rate. and the 2nd half are negative frequencies. if your input is only real data with 0 for the imaginary signal positive and negative frequencies are the same. The relationship of real/imaginary signal on the output contains phase information from your input signal.

The frequency for bin i is i * (samplerate / n), where n is the number of samples in the FFT's input window.
If you're handling audio, since pitch is proportional to log of frequency, the pitch resolution of the bins increases as the frequency does -- it's hard to resolve low frequency signals accurately. To do so you need to use larger FFT windows, which reduces time resolution. There is a tradeoff of frequency against time resolution for a given sample rate.
You mention a bin with a large value at 0 -- this is the bin with frequency 0, i.e. the DC component. If this is large, then presumably your values are generally positive. Bin n/2 (in your case 256) is the Nyquist frequency, half the sample rate, which is the highest frequency that can be resolved in the sampled signal at this rate.
If the signal is real, then bins n/2+1 to n-1 will contain the complex conjugates of bins n/2-1 to 1, respectively. The DC value only appears once.

The samples are, as others have said, equally spaced in the frequency domain (not logarithmic).
For example 1, you should get this:
alt text http://home.comcast.net/~kootsoop/images/SINE1.jpg
For the other example you should get
alt text http://home.comcast.net/~kootsoop/images/SINE2.jpg
So your answers both appear to be correct regarding the peak location.
What I'm not getting is the large DC component. Are you sure you are generating a sine wave as the input? Does the input go negative? For a sinewave, the DC should be close to zero provided you get enough cycles.

Another avenue is to craft a Goertzel's Algorithm of each note center frequency you are looking for.
Once you get one implementation of the algorithm working you can make it such that it takes parameters to set it's center frequency. With that you could easily run 88 of them or what ever you need in a collection and scan for the peak value.
The Goertzel Algorithm is basically a single bin FFT. Using this method you can place your bins logarithmically as musical notes naturally go.
Some pseudo code from Wikipedia:
s_prev = 0
s_prev2 = 0
coeff = 2*cos(2*PI*normalized_frequency);
for each sample, x[n],
s = x[n] + coeff*s_prev - s_prev2;
s_prev2 = s_prev;
s_prev = s;
end
power = s_prev2*s_prev2 + s_prev*s_prev - coeff*s_prev2*s_prev;
The two variables representing the previous two samples are maintained for the next iteration. This can be then used in a streaming application. I thinks perhaps the power calculation should be inside the loop as well. (However it is not depicted as such in the Wiki article.)
In the tone detection case there would be 88 different coeficients, 88 pairs of previous samples and would result in 88 power output samples indicating the relative level in that frequency bin.

WaveyDavey says that he's capturing sound from a mic, thru the audio hardware of his computer, BUT that his results are not zero-centered. This sounds like a problem with the hardware. It SHOULD BE zero-centered.
When the room is quiet, the stream of values coming from the sound API should be very close to 0 amplitude, with slight +- variations for ambient noise. If a vibratory sound is present in the room (e.g. a piano, a flute, a voice) the data stream should show a fundamentally sinusoidal-based wave that goes both positive and negative, and averages near zero. If this is not the case, the system has some funk going on!
-Rick

Related

How to count peaks on chart in LabVIEW above some specific value. How to count amount of hills (Heart Rate Monitor)

I want to create some simple heart rate monitor in LabVIEW.
I have sensor which gives me heart workflow (upper graph): Waveform
On second graph (lower graph) is amount of hills (0 - valley, 1 - hill) and that hills are heart beats (that is voltage waveform). From this I want to get amount of those hills, then multiply this number by 6 and I'll get heart rate per minute.
Measuring card I use: NI USB-6009.
Any idea how to do that?
I can sent a VI file if anyone will be able to help me.
You could use Threshold Peak Detector VI
This VI does not identify the locations or the amplitudes of peaks
with great accuracy, but the VI does give an idea of where and how
often a signal crosses above a certain threshold value.
You could also use Waveform Peak Detection VI
The Waveform Peak Detection VI operates like the array-based Peak
Detector VI. The difference is that this VI's input is a waveform data
type, and the VI has error cluster input and output terminals.
Locations displays the output array of the peaks or valleys, which is
still in terms of the indices of the input waveform. For example, if
one element of Locations is 100, that means that there is a peak or
valley located at index 100 in the data array of the input waveform.
Figure 6 shows you a method for determining the times at which peaks
or valleys occur.
NI have a great tutorial that should answer all your questions, it can be found here:
I had some fun recreating some of your exercise here. I simulated a squarewave. In my sample of the square wave, I know how many samples I have and the sampling frequency. As a result, I calculate how much time my data sample represents. I then count the number of positive edges in the sample. I do some division to calculate beats/second and multiplication for beats/minute. The sampling frequency, Fs, and number of samples, N or #s are required to calculate your beats per minute metric. Their uses are shown below.
The contrived VI
Does that lead you to a solution for your application?

Computing the approximate LCM of a set of numbers

I'm writing a tone generator program for a microcontroller.
I use an hardware timer to trigger an interrupt and check if I need to set the signal to high or low in a particular moment for a given note.
I'm using pretty limited hardware, so the slower I run the timer the more time I have to do other stuff (serial communication, loading the next notes to generate, etc.).
I need to find the frequency at which I should run the timer to have an optimal result, which is, generate a frequency that is accurate enough and still have time to compute the other stuff.
To achieve this, I need to find an approximate (within some percent value, as the higher are the frequencies the more they need to be imprecise in value for a human ear to notice the error) LCM of all the frequencies I need to play: this value will be the frequency at which to run the hardware timer.
Is there a simple enough algorithm to compute such number? (EDIT, I shall clarify "simple enough": fast enough to run in a time t << 1 sec. for less than 50 values on a 8 bit AVR microcontroller and implementable in a few dozens of lines at worst.)
LCM(a,b,c) = LCM(LCM(a,b),c)
Thus you can compute LCMs in a loop, bringing in frequencies one at a time.
Furthermore,
LCM(a,b) = a*b/GCD(a,b)
and GCDs are easily computed without any factoring by using the Euclidean algorithm.
To make this an algorithm for approximate LCMs, do something like round lower frequencies to multiples of 10 Hz and higher frequencies to multiples of 50 Hz. Another idea that is a bit more principled would be to first convert the frequency to an octave (I think that the formula is f maps to log(f/16)/log(2)) This will give you a number between 0 and 10 (or slightly higher --but anything above 10 is almost beyond human hearing so you could perhaps round down). You could break 0-10 into say 50 intervals 0.0, 0.2, 0.4, ... and for each number compute ahead of time the frequency corresponding to that octave (which would be f = 16*2^o where o is the octave). For each of these -- go through by hand once and for all and find a nearby round number that has a number of smallish prime factors. For example, if o = 5.4 then f = 675.58 -- round to 675; if o = 5.8 then f = 891.44 -- round to 890. Assemble these 50 numbers into a sorted array, using binary search to replace each of your frequencies by the closest frequency in the array.
An idea:
project the frequency range to a smaller interval
Let's say your frequency range is from 20 to 20000 and you aim for a 2% accurary, you'll calculate for a 1-50 range. It has to be a non-linear transformation to keep the accurary for lower frequencies. The goal is both to compute the result faster and to have a smaller LCM.
Use a prime factors table to easily compute the LCM on that reduced range
Store the pre-calculated prime factors powers in an array (size about 50x7 for range 1-50), and then use it for the LCM: the LCM of a number is the product of multiplying the highest power of each prime factor of the number together. It's easy to code and blazingly fast to run.
Do the first step in reverse to get the final number.

sampling 2-dimensional surface: how many sample points along X & Y axes?

I have a set of first 25 Zernike polynomials. Below are shown few in Cartesin co-ordinate system.
z2 = 2*x
z3 = 2*y
z4 = sqrt(3)*(2*x^2+2*y^2-1)
:
:
z24 = sqrt(14)*(15*(x^2+y^2)^2-20*(x^2+y^2)+6)*(x^2-y^2)
I am not using 1st since it is piston; so I have these 24 two-dim ANALYTICAL functions expressed in X-Y Cartesian co-ordinate system. All are defined over unit circle, as they are orthogonal over unit circle. The problem which I am describing here is relevant to other 2D surfaces also apart from Zernike Polynomials.
Suppose that origin (0,0) of the XY co-ordinate system and the centre of the unit circle are same.
Next, I take linear combination of these 24 polynomials to build a 2D wavefront shape. I use 24 random input coefficients in this combination.
w(x,y) = sum_over_i a_i*z_i (i=2,3,4,....24)
a_i = random coefficients
z_i = zernike polynomials
Upto this point, everything is analytical part which can be done on paper.
Now comes the discretization!
I know that when you want to re-construct a signal (1Dim/2Dim), your sampling frequency should be at least twice the maximum frequency present in the signal (Nyquist-Shanon principle).
Here signal is w(x,y) as mentioned above which is nothing but a simple 2Dim
function of x & y. I want to represent it on computer now. Obviously I can not take all infinite points from -1 to +1 along x axis and same for y axis.
I have to take finite no. of data points (which are called sample points or just samples) on this analytical 2Dim surface w(x,y)
I am measuring x & y in metres, and -1 <= x <= +1; -1 <= y <= +1.
e.g. If I divide my x-axis from -1 to 1, in 50 sample points then dx = 2/50= 0.04 metre. Same for y axis. Now my sampling frequency is 1/dx i.e. 25 samples per metre. Same for y axis.
But I took 50 samples arbitrarily; I could have taken 10 samples or 1000 samples. That is the crux of the matter here: how many samples points?How will I determine this number?
There is one theorem (Nyquist-Shanon theorem) mentioned above which says that if I want to re-construct w(x,y) faithfully, I must sample it on both axes so that my sampling frequency (i.e. no. of samples per metre) is at least twice the maximum frequency present in the w(x,y). This is nothing but finding power spectrum of w(x,y). Idea is that any function in space domain can be represented in spatial-frequency domain also, which is nothing but taking Fourier transform of the function! This tells us how many (spatial) frequencies are present in your function w(x,y) and what is the maximum frequency out of these many frequencies.
Now my question is first how to find out this maximum sampling frequency in my case. I can not use MATLAB fft2() or any other tool since it means already I have samples taken across the wavefront!! Obviously remaining option is find it analytically ! But that is time consuming and difficult since I have 24 polynomials & I will have to use then continuous Fourier transform i.e. I will have to go for pen and paper.
Any help will be appreciated.
Thanks
Key Assumptions
You want to use the "Nyquist-Shanon" theorem to determine sampling frequency
Obviously remaining option is find it analytically ! But that is time
consuming and difficult since I have 21 polynomials & I have to use
continuous Fourier transform i.e. done by analytically.
Given the assumption I have made (and noting that consideration of other mathematical techniques is out of scope for StackOverflow), you have no option but to calculate the continuous Fourier Transform.
However, I believe you haven't considered all the options for calculating the transform other than a laborious paper exercise e.g.
Numerical approximation of the continuous F.T. using code
Symbolic Integration e.g. Wolfram Alpha
Surely a numerical approximation of the Fourier Transform will be adequate for your solution?
I am assuming this is for coursework or research rather, so all you really care about as a physicist is a solution that is the quickest solution that is accurate within the scope of your problem.
So to conclude, IMHO, don't waste time searching for a more mathematically elegant solution or trick and just solve the problem with one of the above methods

FFT Size in jTransforms

I need to calculate the FFT of audiodata in an Android Project and I use jTransforms to achieve this.
The samples of the audiodata are a few seconds long and are recorded with a samplerate of 11025 Hertz.
I am not sure how to set the length of the FFT in jTransforms.
I do not really need high frequency resolution, so a size of 1024 would be enough.
But from what I have understood learning about the FFT, if I decrease the FFT size F and use a sample with a lenght of N > F, only the first F values of the original sample are transformed.
Is that true or did I understand something wrong?
If it is true, is there an efficient way to tranform the whole signal and decreasing the FFT-Size afterwards?
I need this to classify different signals using Support Vector Machines, and FFT-Sizes > 1024 would give me too much features as output, so I would have to reduce the result of the FFT to a more compact vector.
If you only want the FFT magnitude results, then use the FFT repeatedly on successive 1024 chunk lengths of data, and vector sum all the successive magnitude results to get an estimate for the entire much longer signal.
See Welch's Method on estimating spectral density for an explanation of why this might be a useful technique.
Im not familiar with the jTransform library, but do you really set the size of the transform before calculating it? Amplitude values of the time-domain signal and the sampling frequency (11.025 kHz) is enough to calculate the FFT (note that the FFT assumes constant sampling rate)
The resolution in frequency domain will be determined by Nyquist's theorem; the maximum resolvable frequency in your signal will be equal to half your sampling rate. In other words, sampling your signal with 11.025 kHz, you can expect your frequency graph to contain frequency values (and corresponding amplitudes) between 0 Hz - 5.5125 kHz.
UPDATE:
The resolution of the FFT (the narrowness of the frequency bins) will increase/improve if your input signal is longer, thus 1024 samples might not be a long sequence enough if you need to distinguish between very small changes in frequency. If thats not a problem for you application, and the nature of your data is not variying quickly, and you have the processing time, then taking an average of 3-4 FFT estimates will greatly reduce noise and improve estimates.

Units of frequency when using FFT in NumPy

I am using the FFT function in NumPy to do some signal processing. I have array called signal
which has one data point for each hour and has a total of 576 data points. I use the following code on signal to look at its fourier transform.
t = len(signal)
ft = fft(signal,n=t)
mgft=abs(ft)
plot(mgft[0:t/2+1])
I see two peaks but I am unsure as to what the units of the x axis are i.e., how they map onto hours? Any help would be appreciated.
Given sampling rate FSample and transform blocksize N, you can calculate the frequency resolution deltaF, sampling interval deltaT, and total capture time capT using the relationships:
deltaT = 1/FSample = capT/N
deltaF = 1/capT = FSample/N
Keep in mind also that the FFT returns value from 0 to FSample, or equivalently -FSample/2 to FSample/2. In your plot, you're already dropping the -FSample/2 to 0 part. NumPy includes a helper function to calculate all this for you: fftfreq.
For your values of deltaT = 1 hour and N = 576, you get deltaF = 0.001736 cycles/hour = 0.04167 cycles/day, from -0.5 cycles/hour to 0.5 cycles/hour. So if you have a magnitude peak at, say, bin 48 (and bin 528), that corresponds to a frequency component at 48*deltaF = 0.0833 cycles/hour = 2 cycles/day.
In general, you should apply a window function to your time domain data before calculating the FFT, to reduce spectral leakage. The Hann window is almost never a bad choice. You can also use the rfft function to skip the -FSample/2, 0 part of the output. So then, your code would be:
ft = np.fft.rfft(signal*np.hanning(len(signal)))
mgft = abs(ft)
xVals = np.fft.fftfreq(len(signal), d=1.0) # in hours, or d=1.0/24 in days
plot(xVals[:len(mgft)], mgft)
Result of fft transformation doesn't map to HOURS, but to frequencies contained in your dataset. It would be beneficial to have your transformed graph so we can see where the spikes are.
You might be having spike at the beginning of the transformed buffer, since you didn't do any windowing.
In general, the dimensional units of frequency from an FFT are the same as the dimensional units of the sample rate attributed to the data fed to the FFT, for example: per meter, per radian, per second, or in your case, per hour.
The scaled units of frequency, per FFT result bin index, are N / theSampleRate, with the same dimensional units as above, where N is the length of the full FFT (you might only be plotting half of this length in the case of strictly real data).
Note that each FFT result peak bin represents a filter with a non-zero bandwidth, so you might want to add some uncertainty or error bounds to the result points you map onto frequency values. Or even use an interpolation estimation method, if needed and appropriate for the source data.