How to create a function that delays call to given function? - ramda.js

Using ramda, I'm trying to find (or build) a very trivial operator that expects a function and returns a function that asks for its arguments before returning a new function that makes the actual call. You can think of this as "delaying" the invocation. As pointed out by replies below, this is usually call a thunk.
Essentially,
const wrap = fn => (...args) => () => fn(...args);
const sayHiWorld = wrap(console.log)('hi', 'world');
sayHiWorld();
// -> 'hi world'
Partial application won't work in my case because args are actually not known at moment of definition. Closest I got was by using R.useWith - but that restricts the number of arguments.
Any ideas?

I'm a little confused. It looks as though you have a perfectly good version here in your wrap. Are you expecting that Ramda must already have that? Do you want a version of it written with Ramda?
What you want to create with a call to this function is often known as a thunk, and I've sometimes seen such a function called thunkify. But wrap is fine too.
You might see the discussion here too.

Related

Default value in new method causing object construction to work in an unexpected way

Can someone help me understand the following behavior?
class Box {
has $.data;
multi method new($d) {
say 'here';
self.bless(data => $d);
}
}
# construct object with the custom new()
my $box = Box.new('hi');
say $box.data;
# construct object using default new()
my $box2 = Box.new(data => 'be');
say $box2.data;
This outputs:
here
hi
be
OK, perfect, exactly what is expected. However, change the code so the new method $d has a default value like this:
class Box {
has $.data;
multi method new($d = '') { # we give $d a default value now
say 'here';
self.bless(data => $d);
}
}
my $box = Box.new('hi');
say $box.data;
my $box2 = Box.new(data => 'be');
say $box2.data;
You now get this output:
here
hi
here # new method is getting called both times and $.data is not set
This is not what I expected. I figured I would get the same output as before. Can someone please explain why I don't get he same output?
UPDATE: I notice that if I change the new() signature to:
multi method new($d = '', *%_ ())
I can get things to work as expected. But I still don't understand exactly why it didn't work without *%_ () in the first place.
The two overloads of new under consideration here are yours and the one defined on the top-level type Mu. Namely,
multi method new($d)
multi method new(*%attrinit)
Or, written more explicitly,
multi method new(Box: $d?)
multi method new(Mu: *%attrinit)
But, we need to be even more explicit. Because, though it looks like only the latter should match Box.new(data => 'be'), the two are in fact both valid candidates. That's because, according to the documentation for Method,
Methods automatically capture extra named arguments into the special variable %_, where other types of Routine will throw at runtime. So
method x() {}
is actually equivalent to
method x(*%_) {}
and that applies to multi method as well. The rationale behind this is to allow methods to forward named arguments that they don't understand to their callers.
So, really, our two overloads are
multi method new(Box: $d?, *%_)
multi method new(Mu: *%attrinit)
So when we write Box.new(data => 'be'), we have two candidates which are valid, and the first one has a more specific invocant (Box rather than Mu), so it gets called.
In the case without the default argument, the candidates look like
multi method new(Box: $d, *%_)
multi method new(Mu: *%attrinit)
so the first multi is only a candidate for invocation if there's one positional argument.
We can use the trick from this Stack Overflow answer to suppress this behavior.
multi method new($d = '', *% ()) {
say "here $d";
self.bless(data => $d);
}
The *% () (the space is important here) is actually a rather neat little trick. The linked answer explains it better than I can, but basically the *% part says "I accept any named arguments", and then the () is a sub-signature to match against, namely the empty signature. You can't stop a method from accepting named arguments, so this more or less reads as "my method accepts any named arguments, as long as the list of named arguments is equal to the empty list".
Interesting question and good Answers already.
However, I think that both depend a little too much on obscure aspects of raku, namely 'bless' and '*% ()' - not to say that these tricks don't have a place, but that the common case given (a positional with default) should not need you to reach for the power tools.
Here's my solution:
class Box {
has $.data = ''; # we give data a default value here
multi method new($data) {
samewith(:$data) # redespatch positional data as named data
}
}

Kotlin construction: function call with additional body - what such construction means or how it is called (if I want to look it up in the docs)?

I am seeing the Kotlin code:
navController.navigate("sales_order/" + it.toString()) {
popUpTo(navController.graph.findStartDestination().id) {
saveState = true
}
launchSingleTop = true
restoreState = true
}
which I can describe as "function call" (navController.navigate) "with additional body" ({...}). How such construction is called (if I want to look it up in the docs) and what does it mean?
When I checked the type of navController.navigate(...) args, then there are 2 arguments. The first argument - string - is provided in () and I am trying to guess, that everything inside {...} is the content for the second argument which has type NavOptionsBuilder in this case. So, I can guess that NavOptionsBuilder has 3 arguments: 1 function call popUpTo that returns some object and 2 named arguments (launchSingleTop, restoreState) which are Boolean type.
Am I deciphering this construction right - just another way of passing arguments - or is there something deeper?
Am I deciphering this construction right
Almost. You got the beginning right, but the end is not exactly correct.
Let's start with what you got right, and throw in some vocabulary here for posterity. Indeed, you seem to be using the overload of navigate that takes 2 arguments: a string route and a builder function.
Functions in kotlin can be passed in multiple ways, but the most common (and the one used here) is passing a lambda expression. Because the syntax for lambda expressions is based on braces ({ ... }), it makes it look like blocks of code, so the Kotlin language went one step further and allowed to pass lambda expressions outside of the parentheses of the function call when the lambda is the last argument. The reason for this is exactly to allow this kind of constructions which look like their own configuration language. This is what is usually referred to as DSLs (Domain Specific Languages).
Now about what you got wrong:
So, I can guess that NavOptionsBuilder has 3 arguments
Not really. NavOptionsBuilder is the receiver of the function that is passed as the second argument of navigate. This means that, within the lambda that you pass, a NavOptionsBuilder instance is implicitly available as this.
This, in turn, means that you can access methods and properties of NavOptionsBuilder within that lambda block. This is what popUpTo, launchSingleTop, and restoreState are: methods and properties of NavOptionsBuilder - not "arguments".
You can find more general info about this here.

How can one invoke the non-extension `run` function (the one without scope / "object reference") in environments where there is an object scope?

Example:
data class T(val flag: Boolean) {
constructor(n: Int) : this(run {
// Some computation here...
<Boolean result>
})
}
In this example, the custom constructor needs to run some computation in order to determine which value to pass to the primary constructor, but the compiler does not accept the run, citing Cannot access 'run' before superclass constructor has been called, which, if I understand correctly, means instead of interpreting it as the non-extension run (the variant with no object reference in https://kotlinlang.org/docs/reference/scope-functions.html#function-selection), it construes it as a call to this.run (the variant with an object reference in the above table) - which is invalid as the object has not completely instantiated yet.
What can I do in order to let the compiler know I mean the run function which is not an extension method and doesn't take a scope?
Clarification: I am interested in an answer to the question as asked, not in a workaround.
I can think of several workarounds - ways to rewrite this code in a way that works as intended without calling run: extracting the code to a function; rewriting it as a (possibly highly nested) let expression; removing the run and invoking the lambda (with () after it) instead (funnily enough, IntelliJ IDEA tags that as Redundant lambda creation and suggests to Inline the body, which reinstates the non-compiling run). But the question is not how to rewrite this without using run - it's how to make run work in this context.
A good answer should do one of the following things:
Explain how to instruct the compiler to call a function rather than an extension method when a name is overloaded, in general; or
Explain how to do that specifically for run; or
Explain that (and ideally also why) it is not possible to do (ideally with supporting references); or
Explain what I got wrong, in case I got something wrong and the whole question is irrelevant (e.g. if my analysis is incorrect, and the problem is something other than the compiler construing the call to run as this.run).
If someone has a neat workaround not mentioned above they're welcome to post it in a comment - not as an answer.
In case it matters: I'm using multi-platform Kotlin 1.4.20.
Kotlin favors the receiver overload if it is in scope. The solution is to use the fully qualified name of the non-receiver function:
kotlin.run { //...
The specification is explained here.
Another option when the overloads are not in the same package is to use import renaming, but that won't work in this case since both run functions are in the same package.

What is indirect object notation, why is it bad, and how does one avoid it?

The title pretty much sums it up, but here's the long version anyway.
After posting a small snippet of perl code, I was told to avoid indirect object notation, "as it has several side effects". The comment referenced this particular line:
my $some_object = new Some::Module(FIELD => 'value');
As this is how I've always done it, in an effort to get with the times I therefore ask:
What's so bad about it? (specifically)
What are the potential (presumably negative) side effects?
How should that line be rewritten?
I was about to ask the commenter, but to me this is worthy of its own post.
The main problem is that it's ambiguous. Does
my $some_object = new Some::Module(FIELD => 'value');
mean to call the new method in the Some::Module package, or does it mean to call the new function in the current package with the result of calling the Module function in the Some package with the given parameters?
i.e, it could be parsed as:
# method call
my $some_object = Some::Module->new(FIELD => 'value');
# or function call
my $some_object = new(Some::Module(FIELD => 'value'));
The alternative is to use the explicit method call notation Some::Module->new(...).
Normally, the parser guesses correctly, but the best practice is to avoid the ambiguity.
What's so bad about it?
The problems with Indirect Method Notation are avoidable, but it's far easier to tell people to avoid Indirect Method Notation.
The main problem it's very easy to call the wrong function by accident. Take the following code, for example:
package Widget;
sub new { ... }
sub foo { ... }
sub bar { ... }
sub method {
...;
my $o = new SubWidget;
...;
}
1;
In that code, new SubWidget is expected to mean
SubWidget->new()
Instead, it actually means
new("SubWidget")
That said, using strict will catch most of these instances of this error. Were use strict; to be added to the above snippet, the following error would be produced:
Bareword "SubWidget" not allowed while "strict subs" in use at Widget.pm line 11.
That said, there are cases where using strict would not catch the error. They primarily involve the use of parens around the arguments of the method call (e.g. new SubWidget($x)).
So that means
Using Indirect Object Notation without parens can result in odd error messages.
Using Indirect Object Notation with parens can result in the wrong code being called.
The former is bearable, and the latter is avoidable. But rather than telling people "avoid using parens around the arguments of method calls using Indirect Method Notation", we simply tell people "avoid using Indirect Method Notation". It's just too fragile.
There's another issue. It's not just using Indirect Object Notation that's a problem, it's supporting it in Perl. The existence of the feature causes multiple problems. Primarily,
It causes some syntax errors to result in very odd/misleading error messages because the code appeared to be using ION when it wasn't.
It prevents useful features from being implemented since they clash with valid ION syntax.
On the plus side, using no indirect; helps the first problem.
How should that line be rewritten?
The correct way to write the method call is the following:
my $some_object = Some::Module->new(FIELD => 'value');
That said, even this syntax is ambiguous. It will first check if a function named Some::Module exists. But that's so very unlikely that very few people protect themselves from such problems. If you wanted to protect yourself, you could use the following:
my $some_object = Some::Module::->new(FIELD => 'value');
As to how to avoid it: There's a CPAN module that forbids the notation, acting like a pragma module:
no indirect;
http://metacpan.org/pod/indirect
The commenter just wanted to see Some::Module->new(FIELD => 'value'); as the constructor.
Perl can use indirect object syntax for other bare words that look like they might be methods, but nowadays the perlobj documentation suggests not to use it.
The general problem with it is that code written this way is ambiguous and exercises Perl's parser to test the namespace to e.g. check when you write method Namespace whether Namespace::method exists.

MicrosoftAjaxMinifier doesn't seem to remove "unreachable code"

I'm using this with BundleTransformer from nuget and System.Web.Optimisation in an ASP.Net app. According to various docs this minifier is supposed to "remove unreachable code". I know it's not as aggressive as google closure (which I can't use presently) but I can't get even the simplest cases to work, eg;
function foo() {
}
where foo isn't called from anywhere. I can appreciate the argument that says this might be an exported function but I can't see a way to differentiate that. All my JS code is concatenated so it would be able to say for sure whether that function was needed or not if I can find the right switches.
The only way I've found to omit unnecessary code is to use the debugLookupList property in the web.config for BundleTransformer but that seems like a sledgehammer to crack a nut. It's not very granular.
Does anyone have an example of how to write so-called 'unreachable code' that this minifier will recognise?
Here's a place to test online
I doubt the minifier has any way of knowing if a globally defined function can be removed safely (as it doesn't know the full scope). On the other hand it might not remove any unused functions and might only be interested in unreachable code (i.e. code after a return).
Using the JavaScript Module Pattern, your unused private functions would most likely get hoovered up correctly (although I've not tested this). In the example below, the minifier should only be confident about removing the function called privateFunction. Whether it considers unused functions as unreachable code is another matter.
var AmazingModule = (function() {
var module = {};
function privateFunction() {
// ..
}
module.otherFunction = function() {
// ..
};
return module;
}());
function anotherFunction() {
// ..
}