I am preparing a custom model to run on android phone using instructions from https://www.tensorflow.org/mobile/prepare_models
First i retrained the model on custom images using below command:
$ python tensorflow/examples/image_retraining/retrain.py --image_dir tensorflow/examples/image_retraining/my_images/ --learning_rate=0.0005 --testing_percentage=15 --validation_percentage=15 --train_batch_size=32 --validation_batch_size=-1 --flip_left_right True --random_scale=30 --random_brightness=30 --eval_step_interval=100 --how_many_training_steps=100 --tfhub_module https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/1
and as next step, I tested the model using label_image.py which also works fine in predicting the input image. However, freeze_graph gives error
$ bazel-bin/tensorflow/python/tools/freeze_graph --input_graph=/tmp/output_graph.pb --output_graph=/tmp/frozen_graph.pb
However, I keep getting this error.
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position
57: invalid start byte
I noticed that your --input_graph=/tmp/output_graph.pb. Is your graph written as binary file (as_text=False), instead of pbtxt? If so, you will need to pass the --input_binary=true flag to freeze_graph.
if you write your graph as a binary file using:
tf.train.write_graph(sess.graph_def, 'tarinGraph', 'train2.pbtxt', as_text=False)
then you will need to pass the --input_binary=true flag to freeze_graph.
Related
i git yolov7(https://github.com/WongKinYiu) with yolov7.pt and try to run
detect.py(i just want to run the example). it seems to be normal. but the output image has no mask.Why?
here is my code and log:
(PyTorch) E:\yolov7>python detect.py --weights yolov7.pt --source inference\images\bus.jpg
Namespace(weights=['yolov7.pt'], source='inference\\images\\bus.jpg', img_size=640, conf_thres=0.25, iou_thres=0.45, device='', view_img=False, save_txt=False, save_conf=False, nosave=False, classes=None, agnostic_nms=False, augment=False, update=False, project='runs/detect', name='exp', exist_ok=False, no_trace=False)
YOLOR v0.1-103-g6ded32c torch 1.11.0 CUDA:0 (NVIDIA GeForce GTX 1650, 4095.6875MB)
Fusing layers...
RepConv.fuse_repvgg_block
RepConv.fuse_repvgg_block
RepConv.fuse_repvgg_block
Model Summary: 306 layers, 36905341 parameters, 6652669 gradients
Convert model to Traced-model...
traced_script_module saved!
model is traced!
E:\anaconda\envs\PyTorch\lib\site-packages\torch\functional.py:568: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at C:\cb\pytorch_1000000000000\work\aten\src\ATen\native\TensorShape.cpp:2228.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
Done. (151.6ms) Inference, (9.3ms) NMS
The image with the result is saved in: runs\detect\exp4\bus.jpg
Done. (3.713s)
and here is my result:output image
You set the argument classes=None.
The classes variable refers to a list of classes, where you define the index of the entities saved inside the weights you are referencing for the inference.
From detect.py:
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
Since you told the model to check for zero classes, the model itself will not report anything.
I was also facing this issue. After downgrading cuda version to 10.2 my problem was solved. I used Cuda 10.2 with PyTorch 1.10.0 via pip installation. I hope it helps you too.
pip3 install torch==1.10.0+cu102 torchvision==0.11.1+cu102 torchaudio===0.10.0+cu102 -f https://download.pytorch.org/whl/cu102/torch_stable.html
Source of the answer: link
Since when you are working with GPU, It allows half precision by default, which you can change by editing your detect.py file.
Go to detect.py file and not exactly sure but on line 31, you will see this line of code:
half = device.type != 'cpu' # half precision only supported on CUDA
Replace that line with
half = False
and then save default.py file.
Now when you are using your detection command, make sure to use --device 0 that indicates your GPU must be utilize for detection.
python detect.py --weights yolov7.pt --device 0 --source inference\images\bus.jpg
python mo_tf.py
--saved_model_dir C:\DATASETS\mask50000\exports\saved_model
--output_dir C:\DATASETS\mask50000
--reverse_input_channels
--tensorflow_custom_operations_config extensions\front\tf\mask_rcnn_support_api_v2.0.json
--tensorflow_object_detection_api_pipeline_config C:\DATASETS\mask50000\exports\pipeline.config
--log_level=DEBUG
I have been trying to convert the model using the above script, but every time I got the error:
"Exception: Exception occurred during running replacer "REPLACEMENT_ID (<class'extensions.front.tf.tensorflow_custom_operations_config_update.TensorflowCustomOperationsConfigUpdate'>)": The function 'update_custom_layer_attributes' must be implemented in the sub-class."
I have exported the graph using exporter_main_v2.py. If more information is needed please inform me.
EDIT:
I was able to convert the model by changing the file mask_rcnn_support_api_v2.4.json.
first change:
"custom_attributes": {
"operation_to_add": "Proposal",
"clip_before_nms": false,
"clip_after_nms": true
}
second change:
"start_points": [
"StatefulPartitionedCall/concat/concat",
"StatefulPartitionedCall/concat_1/concat",
"StatefulPartitionedCall/GridAnchorGenerator/Identity",
"StatefulPartitionedCall/Cast",
"StatefulPartitionedCall/Cast_1",
"StatefulPartitionedCall/Shape"
]
that solved the problme.
OpenVINO 2020.4 is not compatible with TensorFlow 2. Support for TF 2.0 Object Detection API models was fully enabled only in OpenVINO 2021.3.
I’ve successfully converted the model mask_rcnn_inception_resnet_v2_1024x1024_coco17 to IR using the latest OpenVINO release (2021.4.752).
I share the MO conversion command here:
python mo_tf.py --saved_model_dir <model_dir>\saved_model --tensorflow_object_detection_api_pipeline_config <pipeline_dir>\pipeline.config --transformations_config <installed_dir>\extensions\front\tf\mask_rcnn_support_api_v2.0.json"
I'm following the tutorial on using your own template images to do object 3D pose tracking, but I'm trying to get it working on Ubuntu 20.04 with a live webcam stream.
I was able to successfully make my index .pb file with extracted KNIFT features from my custom images.
It seems the next thing to do is load the provided template matching graph (in mediapipe/graphs/template_matching/template_matching_desktop.pbtxt) (replacing the index_proto_filename of the BoxDetectorCalculator with my own index file), and run it on a video input stream to track my custom object.
I was hoping that would be easiest to do in python, but am running into dependency problems.
(I installed mediapipe python with pip3 install mediapipe)
First, I couldn't find how to directly load a .pbtxt file as a graph in the mediapipe python API, but that's ok. I just load the text it contains and use that.
template_matching_graph_filepath=os.path.abspath("~/mediapipe/mediapipe/graphs/template_matching/template_matching_desktop.pbtxt")
graph = mp.CalculatorGraph(graph_config=open(template_matching_graph_filepath).read())
But I get missing calculator targets.
No registered object with name: OpenCvVideoDecoderCalculator; Unable to find Calculator "OpenCvVideoDecoderCalculator"
or
[libprotobuf ERROR external/com_google_protobuf/src/google/protobuf/text_format.cc:309] Error parsing text-format mediapipe.CalculatorGraphConfig: 54:70: Could not find type "type.googleapis.com/mediapipe.TfLiteInferenceCalculatorOptions" stored in google.protobuf.Any.
It seems similar to this troubleshooting case but, since I'm not trying to compile an application, I'm not sure how to link in the missing calculators.
How to I make the mediapipe python API aware of these graphs?
UPDATE:
I made decent progress by adding the graphs that the template_matching depends on to the cc_library deps of the mediapipe/python/BUILD file
cc_library(
name = "builtin_calculators",
deps = [
"//mediapipe/calculators/image:feature_detector_calculator",
"//mediapipe/calculators/image:image_properties_calculator",
"//mediapipe/calculators/video:opencv_video_decoder_calculator",
"//mediapipe/calculators/video:opencv_video_encoder_calculator",
"//mediapipe/calculators/video:box_detector_calculator",
"//mediapipe/calculators/tflite:tflite_inference_calculator",
"//mediapipe/calculators/tflite:tflite_tensors_to_floats_calculator",
"//mediapipe/calculators/util:timed_box_list_id_to_label_calculator",
"//mediapipe/calculators/util:timed_box_list_to_render_data_calculator",
"//mediapipe/calculators/util:landmarks_to_render_data_calculator",
"//mediapipe/calculators/util:annotation_overlay_calculator",
...
I also modified solution_base.py so it knows about BoxDetector's options.
from mediapipe.calculators.video import box_detector_calculator_pb2
...
CALCULATOR_TO_OPTIONS = {
'BoxDetectorCalculator':
box_detector_calculator_pb2
.BoxDetectorCalculatorOptions,
Then I rebuilt and installed mediapipe python from source with:
~/mediapipe$ python3 setup.py install --link-opencv
Then I was able to make my own class derived from SolutionBase
from mediapipe.python.solution_base import SolutionBase
class ObjectTracker(SolutionBase):
"""Process a video stream and output a video with edges of templates highlighted."""
def __init__(self,
object_knift_index_file_path):
super().__init__(binary_graph_path=object_pose_estimation_binary_file_path,
calculator_params={"BoxDetector.index_proto_filename": object_knift_index_file_path},
)
def process(self, image: np.ndarray) -> NamedTuple:
return super().process(input_data={'input_video':image})
ot = ObjectTracker(object_knift_index_file_path="/path/to/my/object_knift_index.pb")
Finally, I process a video frame from a cv2.VideoCapture
cv_video = cv2.VideoCapture(0)
result, frame = cv_video.read()
input_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
res = ot.process(image=input_frame)
So close! But I run into this error which I just don't know what to do with.
/usr/local/lib/python3.8/dist-packages/mediapipe/python/solution_base.py in process(self, input_data)
326 if data.shape[2] != RGB_CHANNELS:
327 raise ValueError('Input image must contain three channel rgb data.')
--> 328 self._graph.add_packet_to_input_stream(
329 stream=stream_name,
330 packet=self._make_packet(input_stream_type,
RuntimeError: Graph has errors:
Calculator::Open() for node "BoxDetector" failed: ; Error while reading file: /usr/local/lib/python3.8/dist-packages/
Looks like CalculatorNode::OpenNode() is trying to open the python API install path as a file. Maybe it has to do with the default_context. I have no idea where to go from here. :(
I am currently trying to get a trained TF seq2seq model working with Tensorflow.js. I need to get the json files for this. My input is a few sentences and the output is "embeddings". This model is working when I read in the checkpoint however I can't get it converted for tf.js. Part of the process for conversion is to get my latest checkpoint frozen as a protobuf (pb) file and then convert that to the json formats expected by tensorflow.js.
The above is my understanding and being that I haven't done this before, it may be wrong so please feel free to correct if I'm wrong in what I have deduced from reading.
When I try to convert to the tensorflow.js format I use the following command:
sudo tensorflowjs_converter --input_format=tf_frozen_model
--output_node_names='embeddings'
--saved_model_tags=serve
./saved_model/model.pb /web_model
This then displays the error listed in this post:
ValueError: Input 0 of node Variable/Assign was passed int32 from
Variable:0 incompatible with expected int32_ref.
One of the problems I'm running into is that I'm really not even sure how to troubleshoot this. So I was hoping that perhaps one of you maybe had some guidance or maybe you know what my issue may be.
I have upped the code I used to convert the checkpoint file to protobuf at the link below. I then added to the bottom of the notebook an import of that file that is then providing the same error I get when trying to convert to tensorflowjs format. (Just scroll to the bottom of the notebook)
https://github.com/xtr33me/textsumToTfjs/blob/master/convert_ckpt_to_pb.ipynb
Any help would be greatly appreciated!
Still unsure as to why I was getting the above error, however in the end I was able to resolve this issue by just switching over to using TF's SavedModel via tf.saved_model. A rough example of what worked for me can be found below should anyone in the future run into something similar. After saving out the below model, I was then able to perform the tensorflowjs_convert call on it and export the correct files.
if first_iter == True: #first time through
first_iter = False
#Lets try saving this badboy
cwd = os.getcwd()
path = os.path.join(cwd, 'simple')
shutil.rmtree(path, ignore_errors=True)
inputs_dict = {
"batch_decoder_input": tf.convert_to_tensor(batch_decoder_input)
}
outputs_dict = {
"batch_decoder_output": tf.convert_to_tensor(batch_decoder_output)
}
tf.saved_model.simple_save(
sess, path, inputs_dict, outputs_dict
)
print('Model Saved')
#End save model code
I am trying out ways to deploy tensorflow model on android/iOS devices. So I did:
1) use tf.saved_model.builder.SavedModelBuilder to get model in .pb file
2) use tf.saved_model.loader.load() to verify that I can restore the model
However, when I want to do further inspection of the model using import_pb_to_tensorboard.py following suggestions at
1) https://medium.com/#daj/how-to-inspect-a-pre-trained-tensorflow-model-5fd2ee79ced0
2) https://hackernoon.com/running-a-tensorflow-model-on-ios-and-android-ce89446c8143
I got this error:
File "/Users/rjtang/_hack/env.tensorflow_src/lib/python3.4/site-packages/google/protobuf/internal/python_message.py", line 1083, in MergeFromString
if self._InternalParse(serialized, 0, length) != length:
.....
File "/Users/rjtang/_hack/env.tensorflow_src/lib/python3.4/site-packages/google/protobuf/internal/decoder.py", line 612, in DecodeRepeatedField
if value.add()._InternalParse(buffer, pos, new_pos) != new_pos:
....
File "/Users/rjtang/_hack/env.tensorflow_src/lib/python3.4/site-packages/google/protobuf/internal/decoder.py", line 746, in DecodeMap
raise _DecodeError('Unexpected end-group tag.')
The code and the generated .pb files are here:
https://github.com/rjt10/hear_it/blob/master/urban_sound/saved_model.pb
https://github.com/rjt10/hear_it/blob/master/urban_sound/savedmodel_save.py
https://github.com/rjt10/hear_it/blob/master/urban_sound/savedmodel_load.py
The version of tensorflow that I use is built from source "HEAD detached at v1.4.1"
Well, I understand what's happening now. Tensorflow has at least 3 ways to save and load a model. The graph will be serialized as one of the following 3 protobuf objects:
GraphDef
MetaGraphDef
SavedModel
You just need to deserialize it properly, such as https://github.com/rjt10/hear_it/blob/master/urban_sound/model_check.py
For Android, TensorFlowInferenceInterface() expects a GraphDef, https://github.com/tensorflow/tensorflow/blob/e2be6d4c4fc9f1b7f6040b51b23190c14202e797/tensorflow/contrib/android/java/org/tensorflow/contrib/android/TensorFlowInferenceInterface.java#L541
That explains why.