ValueError: when defining sparse input with dense layer - tensorflow

I want to feed a sparse tensor into a dense layer
inputs1 = tf.sparse_placeholder(tf.float32, shape=[None, 500], name='input1')
model1 = tf.layers.dense(inputs=inputs1, units=128, name='dense1')
When I execute this I get the following error
ValueError: The last dimension of the inputs to `Dense` should be defined. Found `None`
If I change sparse_placeholder to regular place_holder I don't get this error.

I recommend you use FeatureColumn when you try to do this. First create a column representing your sparse tensor, then build an input layer. Finally, feed this input layer to your dense layer. This will help your code make your intention clear; do you want this to be a one-hot tensor? do you want embeddings? etc.

Related

Keras model.fit, dimensions must be equal?

I am a newbie in ML. I have a set of timeseries data with Date and Temp cols., that I want to use for anomaly detection. I used the MinMax scaler on the data and I got an array normal_train_data with shape (200, 0).
Then I used the autoencoder which uses
keras.layers.Dense(128, activation ='sigmoid').
After that, when I call
history = model.fit(normal_train_data, normal_train_data, epochs= 50, batch_size=128, validation_data=(train_data_scaled[:,1:], train_data_scaled[:,1:]) ...)
I get the error:
ValueaError: Dimensions must be equal but are 128 and 0 with input shapes: [?,128], [?,0].
As far as I understand the input has shape (200,0) and the output(1,128).
Can you help me to fix this error please? Thankyou
I tried to use tf.keras.layers.Flatten() in the encoder part. I am not sure if it's ok to use Dense layer or should I choose another.

Tensorflow Keras output layer shape weird error

I am fairly new to TF, Keras and ML in general.
I am trying to implement a very simple MLP with an input shape of (batch_size,3,2) and an output shape of (batch_size,3), that is (if I got it right): for every 3x2 feature, there is a corresponding 3 value array label.
Here is how I create the model:
model = tf.keras.Sequential([
tf.keras.layers.Dense(50,tf.keras.activations.relu,input_shape=((3,2)),
tf.keras.layers.Dense(3)
])
and these are the X and y shapes:
X_train.shape,y_train.shape
TensorShape([64,3,2]),TensorShape([64,3])
On model.fit I am facing a weird error I cannot understand:
ValueError: Dimensions must be equal, but are 3 and 32 for ... with input shapes: [32,3,3] and [32,3]
I have no clue what's going on, I understand the batch size is 32, but where does that [32,3,3] comes from?
Moreover, if from the original 64, I lower the number (shapes) of X_train and y_train, say, to: (19,3,2) and (19,3), I get the following error instead:
InvalidArgumentError: required broadcastable shapes at loc(unknown)
What's even more weird for me is that if I specify a single unit for the output (last) layer, instead of 3 like this:
model = tf.keras.Sequential([
tf.keras.layers.Dense(50,tf.keras.activations.relu,input_shape=((3,2)),
tf.keras.layers.Dense(1)
])
model.fit works, but the predictions have shape (1,3,1) instead of my expected (3,)
I am very confused.
Whenever you have not any idea about the journey of data throughout your model, use model.summary() to see the details and what happens to the shape of data in each layer.
In this case, the input is a 2D array, and the output is a 1D array, and you just used dense layers. Dense layers can not handle 2d features in nature. For example for an image as input, you can not feed it directly to a dense layer. Instead you should use other layers such as Conv2D or Flatten your input (make it 1D) before feeding your data to the dense layer. Otherwise you will get the other dimension in the output.
Inference: If your input dimension and output dimension differs, somewhere in your model, the shape need to be changed. Most common ways to do so, is using a Flatten layer or GlobalAveragePooling and so on.
When you pass an input to a dense layer, the input should be flattened first. There are 2 ways to deal with this:
Way 1: Adding a flatten input as a first layer of your model:
model = Sequential()
model.add(Flatten(input_shape=(3,2)))
model.add(Dense(50, 'relu'))
model.add(Dense(3))
Way 2: Converting the 2D array to 1D before passing the inputs to your model:
X_train = tf.reshape(X_train, shape=([6]))
or
X_train = tf.reshape(X_train, shape=((6,)))
Then change the input shape of the first layer as:
model.add(Dense(50, 'relu', input_shape=(6,))

How to use embedding models in tensorflow hub with LSTM layer?

I'm learning tensorflow 2 working through the text classification with TF hub tutorial. It used an embedding module from TF hub. I was wondering if I could modify the model to include a LSTM layer. Here's what I've tried:
train_data, validation_data, test_data = tfds.load(
name="imdb_reviews",
split=('train[:60%]', 'train[60%:]', 'test'),
as_supervised=True)
embedding = "https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1"
hub_layer = hub.KerasLayer(embedding, input_shape=[],
dtype=tf.string, trainable=True)
model = tf.keras.Sequential()
model.add(hub_layer)
model.add(tf.keras.layers.Embedding(10000, 50))
model.add(tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)))
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(1))
model.summary()
model.compile(optimizer='adam',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=['accuracy'])
history = model.fit(train_data.shuffle(10000).batch(512),
epochs=10,
validation_data=validation_data.batch(512),
verbose=1)
results = model.evaluate(test_data.batch(512), verbose=2)
for name, value in zip(model.metrics_names, results):
print("%s: %.3f" % (name, value))
I don't know how to get the vocabulary size from the hub_layer. So I just put 10000 there. When run it, it throws this exception:
tensorflow.python.framework.errors_impl.InvalidArgumentError: indices[480,1] = -6 is not in [0, 10000)
[[node sequential/embedding/embedding_lookup (defined at .../learning/tensorflow/text_classify.py:36) ]] [Op:__inference_train_function_36284]
Errors may have originated from an input operation.
Input Source operations connected to node sequential/embedding/embedding_lookup:
sequential/embedding/embedding_lookup/34017 (defined at Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/contextlib.py:112)
Function call stack:
train_function
I stuck here. My questions are:
how should I use the embedding module from TF hub to feed an LSTM layer? it looks like embedding lookup has some issues with the setting.
how do I get the vocabulary size from the hub layer?
Thanks
Finally figured out the way to link pre-trained embeddings to LSTM or other layers. Just post the steps here in case anyone feels helpful.
Embedding layer has to be the first layer in the model. (hub_layer is the same as Embedding layer.) The not very intuitive part is that any text input to the hub layer will be converted to only one vector of shape [embedding_dim]. You need to do sentence splitting and tokenization to make sure whatever input to the model is a sequence in the form of array of arrays. e.g., "Let us prepare the data." should be converted to [["let"],["us"],["prepare"], ["the"], ["data"]]. You will also need to pad the sequences if you are using batch mode.
In addition, you will need to convert your target tokens to int if your training labels are strings. The input to the model is array of strings with shape [batch, seq_length], the hub embedding layer converts it to [batch, seq_length, embed_dim]. (If you add a LSTM or other RNN layer, the output from the layer is [batch, seq_length, rnn_units]. ) The output dense layer will output index of text instead of actual text. The index of text is stored in the downloaded tfhub directory as "tokens.txt". You can load the file and convert text to the corresponding index. Otherwise you cannot compute the loss.

Does Tensorflows tf.layers.dense flatten input dimensions?

I'm searching for a data leak in my model. I'm using tf.layers.dense before a masking operation and am concerned that the model could just learn to switch positions in the middle dimension of my input tensor.
When I have an input tensor x = tf.ones((2,3,4)) would tf.layers.dense(x,8) flatten x to a fully connected layer with 2*3*4=24 input neurons and 2*3*8=48 output neurons then reshape it again to [2,3,8], or would it create 2*3=6 fully connected layers with 4 input and 8 output neurons then concatenate them?
As for the Keras Dense layer, it has been already mentioned in another answer that its input is not flattened and instead, it is applied on the last axis of its input.
As for the TensorFlow Dense layer, it is actually inherited from Keras Dense layer and as a result, same as Keras Dense layer, it is applied on the last axis of its input.

How to correct shape of Keras input into a 3D array

I've a Keras model that when I fit fails with this error
> kerasInput = Input(shape=(None, 47))
> LSTM(..)(kerasInput)
...
> model.fit(realInput, ...)
ValueError: Error when checking input: expected input_1 to have 3 dimensions, but got array with shape (10842, 1)
When looking at my input I found it has a shape of (10842, 1) but for each row it's actually a list of list. I can verify with
> pd.DataFrame(realInput[0]).shape
(260, 47)
How I could correct my input shape?
When trying with keras Reshape layer, the creation of the model fails with:
Model inputs must come from `keras.layers.Input` (thus holding past layer metadata), they cannot be the output of a previous non-Input layer. Here, a tensor specified as input to your model was not an Input tensor, it was generated by layer reshape_8.
Note that input tensors are instantiated via `tensor = keras.layers.Input(shape)`.
The tensor that caused the issue was: reshape_8/Reshape:0
You can use numpy.expand_dims method to convert the shape to 3D.
import numpy as np
np.expand_dims(realInput,axis=0)
Reshape layer keras
https://keras.io/layers/core/#reshape
Use the third parameter as 1
# Something Similar to this
X_train = np.reshape(X_train,(X_train.shape[0],X_train.shape[1],1))
Edit: Added np.reshape method
Refer this repository: https://github.com/NilanshBansal/Stock_Price_Prediction/blob/master/Stock_Price_Prediction_20_days_later_4_LSTM.ipynb
As I said before in the comments. You will need to make sure to reshape your data to match what LSTM expects to receive and also make sure the input_shape is correctly set.
I found this post quite helpful when I struggled with inputting to an LSTM layer. I hope it helps you too : Reshape input for LSTM