Can we treat discrete variable as continuous variable in regression as one of covariates - variables

For example, can we consider the count of emergency room visit as a continuous variable when we do regression?

In general, it is risky to treat a discrete numerical variable as though it is equivalent to a continuous variable. This is especially true if your discrete variable represents some sort of categorical information (e.g. red/blue/green), unless the categories have some natural one-dimensional ordering (e.g. ages grouped into 10-year bands), and the numbers representing the different categories are, in some sense, appropriately spaced when mapped into the continuous space.
In your case, if the discrete variable is a count of patient visits, it may be more reasonable to treat this as though it is a continuous variable, especially if those counts tend to be large. Under those circumstances, it may be more reasonable to assume that the counts resemble random numbers drawn from a Gaussian distribution (following the Central Limit theorem), which may fit well with the underlying statistical assumptions of popular regression algorithms. However, if the counts are smaller, or have a high probability of outliers, then it may be more risky to treat them as though they are continuous variables.

Related

How to handle skewed categorical data for multiclass-classification task?

I want to know how to handle the skewed data which contains a particular column that has multiple categorical values. Some of these values have more value_counts() than others.
As you can see in this data the values greater than 7 have value counts lot less than others. How to handle this kind of skewed data? (This is not the target variable. I want to know about skewed independent variable)
I tried changing ' these smaller count values to a particular value (-1). That way I got count of -1 comparable to other values. But training classification model on this data will affect the accuracy.
Oversampling techniques for minority classes/categories may not work well in many scenarios. You could read more about them here.
One thing you could do is to assign different weights to samples from different classes in your model's loss function, inversely proportional to their frequencies. This would ensure that even classes with few datapoints will equally affect the model's loss, as compared to classes with large number of datapoints.
You could share more details about the dataset or the specific model that you are using, to get more specific suggestions/solutions.

Remove Outliers from a Multitrace in PYMC3

I have a model which has 3 parameters A, n, and Beta.
I did a Bayesian analysis using pymc3 and got the posterior distributions of the parameters in a multitrace called "trace". Is there any way to remove the outliers of A (and thus the corresponding values of n and Beta) from the multitrace?
Stating that specific values of A are outliers implies that you have enough "domain expertise" to know that the ranges where these values fall into have very low probability of occurence in the experiment/system you are modelling.
You could therefore narrow your chosen prior distribution for A, such that these "outliers" remain in the tails of the distribution.
Reducing the overall model entropy with such informative prior's choice is risky in a way but can be considered as a valid approach if you know that values within these specific ranges just do not happen in real-life experiments.
Once the Bayes rule applied, your posterior distribution will put a lot less weight on these ranges and should better reflect the actual system behaviour.

Algorithm - finding the order of HMM from observations

I am given a data that consists of N sequences of variable lengths of hidden variables and their corresponding observed variables (i.e., I have both the hidden variables and the observed variables for each sequence).
Is there a way to find the order K of the "best" HMM model for this data, without exhaustive search? (justified heuristics are also legitimate).
I think there may be a confusion about the word "order":
A first-order HMM is an HMM which transition matrix depends only on the previous state. A 2nd-order HMM is an HMM which transition matrix depends only on the 2 previous states, and so on. As the order increases, the theory gets "thicker" (i.e., the equations) and very few implementations of such complex models are implemented in mainstream libraries.
A search on your favorite browser with the keywords "second-order HMM" will bring you to meaningful readings about these models.
If by order you mean the number of states, and with the assumptions that you use single distributions assigned to each state (i.e., you do not use HMMs with mixtures of distributions) then, indeed the only hyperparameter you need to tune is the number of states.
You can estimate the optimal number of states using criteria such as the Bayesian Information Criterion, the Akaike Information Criterion, or the Minimum Message Length Criterion which are based on model's likelihood computations. Usually, the use of these criteria necessitates training multiple models in order to be able to compute some meaningful likelihood results to compare.
If you just want to get a blur idea of a good K value that may not be optimal, a k-means clustering combined with the percentage of variance explained can do the trick: if X clusters explain more than, let say, 90% of the variance of the observations in your training set then, going with an X-state HMM is a good start. The 3 first criteria are interesting because they include a penalty term that goes with the number of parameters of the model and can therefore prevent some overfitting.
These criteria can also be applied when one uses mixture-based HMMs, in which case there are more hyperparameters to tune (i.e., the number of states and the number of component of the mixture models).

Select important features then impute or first impute then select important features?

I have a dataset with lots of features (mostly categorical features(Yes/No)) and lots of missing values.
One of the techniques for dimensionality reduction is to generate a large and carefully constructed set of trees against a target attribute and then use each attribute’s usage statistics to find the most informative subset of features. That is basically we can generate a large set of very shallow trees, with each tree being trained on a small fraction of the total number of attributes. If an attribute is often selected as best split, it is most likely an informative feature to retain.
I am also using an imputer to fill the missing values.
My doubt is what should be the order to the above two. Which of the above two (dimensionality reduction and imputation) to do first and why?
From mathematical perspective you should always avoid data imputation (in the sense - use it only if you have to). In other words - if you have a method which can work with missing values - use it (if you do not - you are left with data imputation).
Data imputation is nearly always heavily biased, it has been shown so many times, I believe that I even read paper about it which is ~20 years old. In general - in order to do a statistically sound data imputation you need to fit a very good generative model. Just imputing "most common", mean value etc. makes assumptions about the data of similar strength to the Naive Bayes.

Need help generating discrete random numbers from distribution

I searched the site but did not find exactly what I was looking for... I wanted to generate a discrete random number from normal distribution.
For example, if I have a range from a minimum of 4 and a maximum of 10 and an average of 7. What code or function call ( Objective C preferred ) would I need to return a number in that range. Naturally, due to normal distribution more numbers returned would center round the average of 7.
As a second example, can the bell curve/distribution be skewed toward one end of the other? Lets say I need to generate a random number with a range of minimum of 4 and maximum of 10, and I want the majority of the numbers returned to center around the number 8 with a natural fall of based on a skewed bell curve.
Any help is greatly appreciated....
Anthony
What do you need this for? Can you do it the craps player's way?
Generate two random integers in the range of 2 to 5 (inclusive, of course) and add them together. Or flip a coin (0,1) six times and add 4 to the result.
Summing multiple dice produces a normal distribution (a "bell curve"), while eliminating high or low throws can be used to skew the distribution in various ways.
The key is you are going for discrete numbers (and I hope you mean integers by that). Multiple dice throws famously generate a normal distribution. In fact, I think that's how we were first introduced to the Gaussian curve in school.
Of course the more throws, the more closely you approximate the bell curve. Rolling a single die gives a flat line. Rolling two dice just creates a ramp up and down that isn't terribly close to a bell. Six coin flips gets you closer.
So consider this...
If I understand your question correctly, you only have seven possible outcomes--the integers (4,5,6,7,8,9,10). You can set up an array of seven probabilities to approximate any distribution you like.
Many frameworks and libraries have this built-in.
Also, just like TokenMacGuy said a normal distribution isn't characterized by the interval it's defined on, but rather by two parameters: Mean μ and standard deviation σ. With both these parameters you can confine a certain quantile of the distribution to a certain interval, so that 95 % of all points fall in that interval. But resticting it completely to any interval other than (−∞, ∞) is impossible.
There are several methods to generate normal-distributed values from uniform random values (which is what most random or pseudorandom number generators are generating:
The Box-Muller transform is probably the easiest although not exactly fast to compute. Depending on the number of numbers you need, it should be sufficient, though and definitely very easy to write.
Another option is Marsaglia's Polar method which is usually faster1.
A third method is the Ziggurat algorithm which is considerably faster to compute but much more complex to program. In applications that really use a lot of random numbers it may be the best choice, though.
As a general advice, though: Don't write it yourself if you have access to a library that generates normal-distributed random numbers for you already.
For skewing your distribution I'd just use a regular normal distribution, choosing μ and σ appropriately for one side of your curve and then determine on which side of your wanted mean a point fell, stretching it appropriately to fit your desired distribution.
For generating only integers I'd suggest you just round towards the nearest integer when the random number happens to fall within your desired interval and reject it if it doesn't (drawing a new random number then). This way you won't artificially skew the distribution (such as you would if you were clamping the values at 4 or 10, respectively).
1 In testing with deliberately bad random number generators (yes, worse than RANDU) I've noticed that the polar method results in an endless loop, rejecting every sample. Won't happen with random numbers that fulfill the usual statistic expectations to them, though.
Yes, there are sophisticated mathematical solutions, but for "simple but practical" I'd go with Nosredna's comment. For a simple Java solution:
Random random=new Random();
public int bell7()
{
int n=4;
for (int x=0;x<6;++x)
n+=random.nextInt(2);
return n;
}
If you're not a Java person, Random.nextInt(n) returns a random integer between 0 and n-1. I think the rest should be similar to what you'd see in any programming language.
If the range was large, then instead of nextInt(2)'s I'd use a bigger number in there so there would be fewer iterations through the loop, depending on frequency of call and performance requirements.
Dan Dyer and Jay are exactly right. What you really want is a binomial distribution, not a normal distribution. The shape of a binomial distribution looks a lot like a normal distribution, but it is discrete and bounded whereas a normal distribution is continuous and unbounded.
Jay's code generates a binomial distribution with 6 trials and a 50% probability of success on each trial. If you want to "skew" your distribution, simply change the line that decides whether to add 1 to n so that the probability is something other than 50%.
The normal distribution is not described by its endpoints. Normally it's described by it's mean (which you have given to be 7) and its standard deviation. An important feature of this is that it is possible to get a value far outside the expected range from this distribution, although that will be vanishingly rare, the further you get from the mean.
The usual means for getting a value from a distribution is to generate a random value from a uniform distribution, which is quite easily done with, for example, rand(), and then use that as an argument to a cumulative distribution function, which maps probabilities to upper bounds. For the standard distribution, this function is
F(x) = 0.5 - 0.5*erf( (x-μ)/(σ * sqrt(2.0)))
where erf() is the error function which may be described by a taylor series:
erf(z) = 2.0/sqrt(2.0) * Σ∞n=0 ((-1)nz2n + 1)/(n!(2n + 1))
I'll leave it as an excercise to translate this into C.
If you prefer not to engage in the exercise, you might consider using the Gnu Scientific Library, which among many other features, has a technique to generate random numbers in one of many common distributions, of which the Gaussian Distribution (hint) is one.
Obviously, all of these functions return floating point values. You will have to use some rounding strategy to convert to a discrete value. A useful (but naive) approach is to simply downcast to integer.