We can build the model with tensorflow layers. Is there any way we can display the model summary as like in Keras.
Keras Model Summary
No, there is no such option. TensorFlow is a lot more generic than Keras and allows arbitrary graph architectures, so showing such a structured summary does not make sense for arbitrary TensorFlow graphs. The closest is probably TensorBoard, which has a very handy interactive graph visualization tool.
Keras is part of TensorFlow (for some time) so you can always get nice things like:
model.output_shape # model summary representation
model.summary() # model configuration
model.get_config() # list all weight tensors in the model
model.get_weights() # get weights and biases
Related
A layer (....) which is an input to the Conv operator producing the output array model/re_lu_1/Relu, is lacking min/max data, which is necessary for quantization. If accuracy matters, either target a non-quantized output format, or run quantized training with your model from a floating point checkpoint to change the input graph to contain min/max information. If you don't care about accuracy, you can pass --default_ranges_min= and --default_ranges_max= for easy experimentation.
For tensorflow 1.x, if you want to quantize, you have to place it with fake quantization nodes to activate the quantization of the model.
There are 3 phases of quantization:
Training part: load your model to graph => create training graph by contrib => train and store weights ckpt
Eval part: load your model to graph without weights => create eval graph => restore graph => export to frozen model
Toco/tflite convert frozen model to quantized model
However, the most important factor is the configuration of batch_normalization in the model. After trying multiple configuration, the best one is using batch_normalization without fused option from tensorflow.keras.layers.
The reason is because Tensorflow want to avoid the folding result to be quantized. Therefore, activation behind batchnorm wont work. Details in [here][1]
In short, this layer should be attached only under tensorflow.keras.layers.Conv2D with parsed activation param, which is Relu/Relu6/Identity
If you conduct the above process: Conv2d=>Activation=>BatchNorm
the layer will not yield errors does not have MinMax information
I will describe my intention here. I want to import BERT pretrained model via tf-hub function hub.module(bert_url, trainable = True) and utilize it for text classification task. I plan to use a large corpus to fine-tune weights of BERT as well as a few dense layers whose inputs are the BERT outputs. I would then like to freeze layers of BERT and train only the dense layers following BERT. How can I do this efficiently?
You mention Hub's TF1 API hub.Module, so I suppose you are writing TF1 code and using the TF1-compatible Hub assets google/bert/..., such as https://tfhub.dev/google/bert_cased_L-12_H-768_A-12/1
Are you going to have separate run of your program for the two phases of training? If so, maybe you can just drop trainable=True from the hub.Module call in the second run. This doesn't affect variable names, so you can restore the training result from the first run, including BERT's adjusted weights. (To be clear: the pre-trained weights shipped with the hub.Module are only used for initialization at the very start of training; restoring a checkpoint overrides them.)
I have keras pretrained model(model.h5). And I want to prune that model with tensorflow Magnitude-based weight pruning with Keras. One curious things is that my pretrained model is built with original keras model > I mean that is not from tensorflow.keras. Inside tensorflow Magnitude-based weight pruning with Keras example, they show how to do with tensorflow.keras model. I want to ask is that can I use their tool to prune my original keras pretrained model?
inside their weight pruning toolkit ,there is two way. one is pruned the model layer by layer while training and second is pruned the whole model. I tried the second way to prune the whole pretrained model. below is my code.
inside their weight pruning toolkit ,there is two way. one is pruned the model layer by layer while training and second is pruned the whole model. I tried the second way to prune the whole pretrained model. below is my code.
For my original pretrained model, I load the weight from model.h5 and can call model.summary() after I apply prune_low_magnitude() none of the method from model cannot call including model.summary() method. And show the error like AttributeError: 'NoneType' object has no attribute 'summary'
model = get_training_model(weight_decay)
model.load_weights('model/keras/model.h5')
model.summary()
epochs = 1
end_step = np.ceil(1.0 * 100 / 2).astype(np.int32) * epochs
print(end_step)
new_pruning_params = {
'pruning_schedule': tfm.sparsity.keras.PolynomialDecay(initial_sparsity=0.1,
final_sparsity=0.90,
begin_step=40,
end_step=end_step,
frequency=30)
}
new_pruned_model = tfm.sparsity.keras.prune_low_magnitude(model, **new_pruning_params)
print(new_pruned_model.summary())
Inside their weight pruning toolkit
enter link description here ,there is two way. one is pruned the model layer by layer while training and second is pruned the whole model. I tried the second way to prune the whole pretrained model. below is my code.
For my original pretrained model, I load the weight from model.h5 and can call model.summary() after I apply prune_low_magnitude() none of the method from model cannot call including model.summary() method. And show the error like
AttributeError: 'NoneType' object has no attribute 'summary'
I hope this answer still helps, but I recently had the same issue that prune_low_magnitude() returns an object of type 'None'. Also new_pruned_model.compile() would not work.
The model I had been using was a pretrained model that could be imported from tensorflow.python.keras.applications.
For me this worked:
(0) Import the libraries:
from tensorflow_model_optimization.python.core.api.sparsity import keras as sparsity
from tensorflow.python.keras.applications.<network_type> import <network_type>
(1) Define the pretrained model architecture
# define model architecture
loaded_model = <model_type>()
loaded_model.summary()
(2) Compile the model architecture and load the pretrained weights
# compile model
opt = SGD(lr=learn_rate, momentum=momentum)
loaded_model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
loaded_model.load_weights('weight_file.h5')
(3) set pruning parameters and assign pruning schedule
# set pruning parameters
pruning_params = {
'pruning_schedule': sparsity.PolynomialDecay(...)
}
# assign pruning schedule
model_pruned = sparsity.prune_low_magnitude(loaded_model, **pruning_params)
(4) compile model and show summary
# compile model
model_pruned.compile(
loss=tf.keras.losses.categorical_crossentropy,
optimizer='SGD',
metrics=['accuracy'])
model_pruned.summary()
It was important to import the libraries specifically from tensorflow.python.keras and use this keras model from the TensorFlow library.
Also, it was important to use the TensorFlow Beta Release (pip install tensorflow==2.0.0b1), otherwise still an object with type 'None' would be returned by prune_low_magnitude.
I am using PyCharm 2019.1.3 (x64) as IDE. Here is the link that led me to this solution: https://github.com/tensorflow/model-optimization/issues/12#issuecomment-526338458
Is it possible to define a graph in native TensorFlow and then convert this graph to a Keras model?
My intention is simply combining (for me) the best of the two worlds.
I really like the Keras model API for prototyping and new experiments, i.e. using the awesome multi_gpu_model(model, gpus=4) for training with multiple GPUs, saving/loading weights or whole models with oneliners, all the convenience functions like .fit(), .predict(), and others.
However, I prefer to define my model in native TensorFlow. Context managers in TF are awesome and, in my opinion, it is much easier to implement stuff like GANs with them:
with tf.variable_scope("Generator"):
# define some layers
with tf.variable_scope("Discriminator"):
# define some layers
# model losses
G_train_op = ...AdamOptimizer(...)
.minimize(gloss,
var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope="Generator")
D_train_op = ...AdamOptimizer(...)
.minimize(dloss,
var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
scope="Discriminator")
Another bonus is structuring the graph this way. In TensorBoard debugging complicated native Keras models are hell since they are not structured at all. With heavy use of variable scopes in native TF you can "disentangle" the graph and look at a very structured version of a complicated model for debugging.
By utilizing this I can directly setup custom loss function and do not have to freeze anything in every training iteration since TF will only update the weights in the correct scope, which is (at least in my opinion) far easier than the Keras solution to loop over all the existing layers and set .trainable = False.
TL;DR:
Long story short: I like the direct access to everything in TF, but most of the time a simple Keras model is sufficient for training, inference, ... later on. The model API is much easier and more convenient in Keras.
Hence, I would prefer to set up a graph in native TF and convert it to Keras for training, evaluation, and so on. Is there any way to do this?
I don't think it is possible to create a generic automated converter for any TF graph, that will come up with a meaningful set of layers, with proper namings etc. Just because graphs are more flexible than a sequence of Keras layers.
However, you can wrap your model with the Lambda layer. Build your model inside a function, wrap it with Lambda and you have it in Keras:
def model_fn(x):
layer_1 = tf.layers.dense(x, 100)
layer_2 = tf.layers.dense(layer_1, 100)
out_layer = tf.layers.dense(layer_2, num_classes)
return out_layer
model.add(Lambda(model_fn))
That is what sometimes happens when you use multi_gpu_model: You come up with three layers: Input, model, and Output.
Keras Apologetics
However, integration between TensorFlow and Keras can be much more tighter and meaningful. See this tutorial for use cases.
For instance, variable scopes can be used pretty much like in TensorFlow:
x = tf.placeholder(tf.float32, shape=(None, 20, 64))
with tf.name_scope('block1'):
y = LSTM(32, name='mylstm')(x)
The same for manual device placement:
with tf.device('/gpu:0'):
x = tf.placeholder(tf.float32, shape=(None, 20, 64))
y = LSTM(32)(x) # all ops / variables in the LSTM layer will live on GPU:0
Custom losses are discussed here: Keras: clean implementation for multiple outputs and custom loss functions?
This is how my model defined in Keras looks in Tensorboard:
So, Keras is indeed only a simplified frontend to TensorFlow so you can mix them quite flexibly. I would recommend you to inspect source code of Keras model zoo for clever solutions and patterns that allows you to build complex models using clean API of Keras.
You can insert TensorFlow code directly into your Keras model or training pipeline! Since mid-2017, Keras has fully adopted and integrated into TensorFlow. This article goes into more detail.
This means that your TensorFlow model is already a Keras model and vice versa. You can develop in Keras and switch to TensorFlow whenever you need to. TensorFlow code will work with Keras APIs, including Keras APIs for training, inference and saving your model.
I am using keras to build a multi-output classification model. My dataset is such as
[x1,x2,x3,x4,y1,y2,y3]
x1,x2,x3 are the features, and y1,y2,y3 are the labels, the y1,y2,y3 are multi-classes.
And I already built a model (I ingore some hidden layers):
def baseline_model(input_dim=23,output_dim=3):
model_in = Input(shape=(input_dim,))
model = Dense(input_dim*5,kernel_initializer='uniform',input_dim=input_dim)(model_in)
model = Activation(activation='relu')(model)
model = Dropout(0.5)(model)
...................
model = Dense(output_dim,kernel_initializer='uniform')(model)
model = Activation(activation='sigmoid')(model)
model = Model(model_in,model)
model.compile(optimizer='adam',loss='binary_crossentropy', metrics=['accuracy'])
return model
And then I try to use the method of keras to make it support classification:
estimator = KerasClassifier(build_fn=baseline_model)
estimator.fit()
estimator.predict(df[0:10])
But I found that the result is not multi-output, only one dimension is output.
[0,0,0,0,0,0,0,0,0,0]
So for the multi-output classification problem, we can not use KerasClassifier function to learn it?
You do not need to wrap the model in KerasClassifier. That wrapper is so that you can use the Keras model with Scikit-Learn. The type of model (classifier, regression, multiclass classifier, etc) is ultimately determined by the shape and activation of the final layer of your model.
You can simply use model.fit() function that is part of Keras. Make sure that you pass the data into the function. You can see more info on the fit function here: https://keras.io/models/model/#fit
Also your loss is setup as binary_crossentropy. For a multi-class problem you will want to use categorical_crossentropy.
model.compile(optimizer='adam',loss='categorical_crossentropy', metrics=['accuracy'])
This model isn't really what Keras refers to as multi-output as far as I can tell. With multi-output you are trying to get the output from several different layers and possibly apply different loss functions to them.
Base on the setup in your question you would be able to use the Keras Sequential model instead of the Functional model if you wanted. Keras recommends using the Sequential model if you can because its simpler. https://keras.io/getting-started/sequential-model-guide/