Batch Normalization Quantize Tensorflow 1.x does not have MinMax information - tensorflow

A layer (....) which is an input to the Conv operator producing the output array model/re_lu_1/Relu, is lacking min/max data, which is necessary for quantization. If accuracy matters, either target a non-quantized output format, or run quantized training with your model from a floating point checkpoint to change the input graph to contain min/max information. If you don't care about accuracy, you can pass --default_ranges_min= and --default_ranges_max= for easy experimentation.

For tensorflow 1.x, if you want to quantize, you have to place it with fake quantization nodes to activate the quantization of the model.
There are 3 phases of quantization:
Training part: load your model to graph => create training graph by contrib => train and store weights ckpt
Eval part: load your model to graph without weights => create eval graph => restore graph => export to frozen model
Toco/tflite convert frozen model to quantized model
However, the most important factor is the configuration of batch_normalization in the model. After trying multiple configuration, the best one is using batch_normalization without fused option from tensorflow.keras.layers.
The reason is because Tensorflow want to avoid the folding result to be quantized. Therefore, activation behind batchnorm wont work. Details in [here][1]
In short, this layer should be attached only under tensorflow.keras.layers.Conv2D with parsed activation param, which is Relu/Relu6/Identity
If you conduct the above process: Conv2d=>Activation=>BatchNorm
the layer will not yield errors does not have MinMax information

Related

Adding Batch Dimension to tensorflow graph which was trained without batching support

I trained the network without batching, hence the input dimension of graph is (H,W,C) (not even [1,H,W,C]).
But during inference, I need predictions for multiple images (batched inference).
How can we achieve this

Freezing BERT layers after importing via TF-hub and training them?

I will describe my intention here. I want to import BERT pretrained model via tf-hub function hub.module(bert_url, trainable = True) and utilize it for text classification task. I plan to use a large corpus to fine-tune weights of BERT as well as a few dense layers whose inputs are the BERT outputs. I would then like to freeze layers of BERT and train only the dense layers following BERT. How can I do this efficiently?
You mention Hub's TF1 API hub.Module, so I suppose you are writing TF1 code and using the TF1-compatible Hub assets google/bert/..., such as https://tfhub.dev/google/bert_cased_L-12_H-768_A-12/1
Are you going to have separate run of your program for the two phases of training? If so, maybe you can just drop trainable=True from the hub.Module call in the second run. This doesn't affect variable names, so you can restore the training result from the first run, including BERT's adjusted weights. (To be clear: the pre-trained weights shipped with the hub.Module are only used for initialization at the very start of training; restoring a checkpoint overrides them.)

Keras: Custom loss function with training data not directly related to model

I am trying to convert my CNN written with tensorflow layers to use the keras api in tensorflow (I am using the keras api provided by TF 1.x), and am having issue writing a custom loss function, to train the model.
According to this guide, when defining a loss function it expects the arguments (y_true, y_pred)
https://www.tensorflow.org/guide/keras/train_and_evaluate#custom_losses
def basic_loss_function(y_true, y_pred):
return ...
However, in every example I have seen, y_true is somehow directly related to the model (in the simple case it is the output of the network). In my problem, this is not the case. How do implement this if my loss function depends on some training data that is unrelated to the tensors of the model?
To be concrete, here is my problem:
I am trying to learn an image embedding trained on pairs of images. My training data includes image pairs and annotations of matching points between the image pairs (image coordinates). The input feature is only the image pairs, and the network is trained in a siamese configuration.
I am able to implement this successfully with tensorflow layers and train it sucesfully with tensorflow estimators.
My current implementations builds a tf Dataset from a large database of tf Records, where the features is a dictionary containing the images and arrays of matching points. Before I could easily feed these arrays of image coordinates to the loss function, but here it is unclear how to do so.
There is a hack I often use that is to calculate the loss within the model, by means of Lambda layers. (When the loss is independent from the true data, for instance, and the model doesn't really have an output to be compared)
In a functional API model:
def loss_calc(x):
loss_input_1, loss_input_2 = x #arbirtray inputs, you choose
#according to what you gave to the Lambda layer
#here you use some external data that doesn't relate to the samples
externalData = K.constant(external_numpy_data)
#calculate the loss
return the loss
Using the outputs of the model itself (the tensor(s) that are used in your loss)
loss = Lambda(loss_calc)([model_output_1, model_output_2])
Create the model outputting the loss instead of the outputs:
model = Model(inputs, loss)
Create a dummy keras loss function for compilation:
def dummy_loss(y_true, y_pred):
return y_pred #where y_pred is the loss itself, the output of the model above
model.compile(loss = dummy_loss, ....)
Use any dummy array correctly sized regarding number of samples for training, it will be ignored:
model.fit(your_inputs, np.zeros((number_of_samples,)), ...)
Another way of doing it, is using a custom training loop.
This is much more work, though.
Although you're using TF1, you can still turn eager execution on at the very beginning of your code and do stuff like it's done in TF2. (tf.enable_eager_execution())
Follow the tutorial for custom training loops: https://www.tensorflow.org/tutorials/customization/custom_training_walkthrough
Here, you calculate the gradients yourself, of any result regarding whatever you want. This means you don't need to follow Keras standards of training.
Finally, you can use the approach you suggested of model.add_loss.
In this case, you calculate the loss exaclty the same way I did in the first answer. And pass this loss tensor to add_loss.
You can probably compile a model with loss=None then (not sure), because you're going to use other losses, not the standard one.
In this case, your model's output will probably be None too, and you should fit with y=None.

Display Tensorflow Model Summary as like in Keras

We can build the model with tensorflow layers. Is there any way we can display the model summary as like in Keras.
Keras Model Summary
No, there is no such option. TensorFlow is a lot more generic than Keras and allows arbitrary graph architectures, so showing such a structured summary does not make sense for arbitrary TensorFlow graphs. The closest is probably TensorBoard, which has a very handy interactive graph visualization tool.
Keras is part of TensorFlow (for some time) so you can always get nice things like:
model.output_shape # model summary representation
model.summary() # model configuration
model.get_config() # list all weight tensors in the model
model.get_weights() # get weights and biases

how to connect the pretrained model's input to the output of tf.train.shuffle_batch?

In classify_image.py, the input image is fed with a loaded image in
predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data})
What if I want to add new layers to the inception model and train the whole model again? Are the variables loaded from classify_image_graph_def.pb trainable? I saw that freeze_graph.py used convert_variables_to_constants to produce freezed graph. So can those loaded weights be trained again, are they constants? And how can I connect the input('shuffle_batch:0') to the inception model to the output of tf.train.shuffle_batch?
The model used in classify_image.py has its variables frozen into constants, and doesn't have any gradient ops, so it's not easy to turn it back into something trainable. You can see how we remove one layer and replace it with something trainable here:
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/image_retraining/retrain.py
It's hard to generalize though. You'd be better off looking at some examples of fine-tuning here:
https://github.com/tensorflow/models/tree/master/inception#how-to-fine-tune-a-pre-trained-model-on-a-new-task