How is it possible to show just the hours and minutes in the X-Axis like:
00:00 1:00 2:00 ... 8:00
von = pd.to_datetime("08.23.17 00:00",infer_datetime_format=True) # Zeitformat: MM.DD.YY HH:MM
bis = pd.to_datetime("08.23.17 08:00",infer_datetime_format=True)
graph = solardaten[['FriWa_VL','FriWa_RL','FriWa_Vpunkt','Speicher_oben']].loc[von:bis]
plt.rcParams.update({'lines.linewidth': 4}) # Increase line width in the plots
plt.rcParams.update({'font.size': 28})
a=graph.plot(figsize=[15,8])
a.set_ylabel("Temperatur in °C", rotation=90)
ticklab = a.yaxis.get_ticklabels()[0]
trans = ticklab.get_transform()
a.set(xlabel="Zeit", title="keine thermosiphonische Strömung")
a.legend(loc="lower left")
plt.show()
Related
for i in range(len(basin)):
prefix = "URL here"
state = "OR"
basin_name = basin[i]
df_orig = pd.read_csv(f"{prefix}/{basin_name}.csv", index_col=0)
#---create date x-index
curr_wy_date_rng = pd.date_range(
start=dt(curr_wy-1, 10, 1),
end=dt(curr_wy, 9, 30),
freq="D",
)
if not calendar.isleap(curr_wy):
print("dropping leap day")
df_orig.drop(["02-29"], inplace=True)
use_cols = ["Median ('91-'20)", f"{curr_wy}"]
df = pd.DataFrame(data=df_orig[use_cols].copy())
df.index = curr_wy_date_rng
#--create EOM percent of median values-------------------------------------
curr_wy_month_rng = pd.date_range(
start=dt(curr_wy-1, 10, 1),
end=dt(curr_wy, 6, 30),
freq="M",
)
df_monthly_prec = pd.DataFrame(data=df_monthly_basin[basin[i]].copy())
df_monthly_prec.index = curr_wy_month_rng
df_monthly = df.groupby(pd.Grouper(freq="M")).max()
df_monthly["date"] = df_monthly.index
df_monthly["wy_date"] = df_monthly["date"].apply(lambda x: cal_to_wy(x))
df_monthly.index = pd.to_datetime(df_monthly["wy_date"])
df_monthly.index = df_monthly["date"]
df_monthly["month"] = df_monthly["date"].apply(
lambda x: calendar.month_abbr[x.month]
)
df_monthly["wy"] = df_monthly["wy_date"].apply(lambda x: x.year)
df_monthly.sort_values(by="wy_date", axis=0, inplace=True)
df_monthly.drop(
columns=[i for i in df_monthly.columns if "date" in i], inplace=True
)
# df_monthly.index = df_monthly['month']
df_merge = pd.merge(df_monthly,df_monthly_prec,how='inner', left_index=True, right_index=True)
#---Subplots---------------------------------------------------------------
fig, ax = plt.subplots(figsize=(8,4))
ax.plot(df_merge.index, df_merge["Median ('91-'20)"], color="green", linewidth="1", linestyle="dashed", label = 'Median Snowpack')
ax.plot(df_merge.index, df_merge[f'{curr_wy}'], color='red', linewidth='2',label='WY Current')
#------Seting x-axis range to expand bar width for ax2
ax.bar(df_merge.index,df_merge[basin[i]], color = 'blue', label = 'Monthly %')
#n = n + 1
#--format chart
ax.set_title(chart_name[w], fontweight = 'bold')
w = w + 1
ax.set_ylabel("Basin Precipitation Index")
ax.set_yticklabels([])
ax.margins(x=0)
ax.legend()
#plt.xlim(0,9)
#---Setting date format
ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b'))
#---EXPORT
plt.show()
End result desired: Plotting both the monthly dataframe (df_monthly_prec) with the daily dataframe charting only monthly values (df_monthly). The bars for the monthly DataFrame should ideally span the whole month on the chart.
I have tried creating a secondary axis, but had trouble aligning the times for the primary and secondary axes. Ideally, I would like to replace plotting df_monthly with df (showing all daily data instead of just the end-of-month values within the daily dataset).
Any assistance or pointers would be much appreciated! Apologies if additional clarification is needed.
I am looking to plot a textbox on a figure displaying the 5-Day NHC forecast cone for a tropical cyclone, in this case Hurricane Dorian. I have the four shapefiles (track line, cone, points, and watches/warnings). On the figure I want to display the following from the first row of points_gdf (yellow circles in the image; the two commented out lines near the bottom of the code is what I tried initially):
Latest Tracking Information: (regular string; below are variables from points_gdf)
LAT LON
MAXWIND
GUST
MSLP
TCSPD
track_line_gdf = geopandas.read_file('nhc/al052019_5day_037/al052019-037_5day_lin.shp')
cone_gdf = geopandas.read_file('nhc/al052019_5day_037/al052019-037_5day_pgn.shp')
points_gdf = geopandas.read_file('nhc/al052019_5day_037/al052019-037_5day_pts.shp')
ww_gdf = geopandas.read_file('nhc/al052019_5day_037/al052019-037_ww_wwlin.shp')
fig = plt.figure(figsize=(14,12))
fig.set_facecolor('white')
ax = plt.subplot(1,1,1, projection=map_crs)
ax.set_extent([-88,-70,25,50])
ax.add_geometries(cone_gdf['geometry'], crs=data_crs, facecolor='white',
edgecolor='black', linewidth=0.25, alpha=0.4)
ax.add_geometries(track_line_gdf['geometry'], crs=data_crs, facecolor='none',
edgecolor='black', linewidth=2)
sc = ax.scatter(points_gdf['LON'], points_gdf['LAT'], transform=data_crs,
zorder=10, c=points_gdf['MAXWIND'], cmap='jet')
ww_colors = {'Tropical Storm Watch': 'gold',
'Hurricane Watch': 'pink',
'Tropical Storm Warning': 'tab:blue',
'Hurricane Warning': 'tab:red'}
for ww_type in ww_colors.keys():
ww_subset = ww_gdf[ww_gdf['TCWW']==ww_type]
ax.add_geometries(ww_subset['geometry'], facecolor='none',
edgecolor=ww_colors[ww_type], crs=data_crs,
linewidth=5)
markers = [plt.Line2D([0,0],[0,0],color=color, marker='o', linestyle='') for color in ww_colors.values()]
Name = ww_gdf['STORMNAME'][0]
Storm = ww_gdf['STORMTYPE'][0]
AdvDate = ww_gdf['ADVDATE'][0]
AdvNum = ww_gdf['ADVISNUM'][0]
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
plt.colorbar(sc, label='Wind Speed (mph)')
plt.title(Storm + ' ' + Name + ' - ' + AdvDate + ' Advisory', fontsize=14, fontweight='bold')
plt.legend(markers, ww_colors.keys())
plt.text(0.05, 0.95, 'Testing', transform=ax.transAxes, va='top', bbox=props)
It would help to know either what error you're running into, or what exactly isn't behaving how you want. I can slightly tweak your code to make this:
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(14,12))
fig.set_facecolor('white')
ax = plt.subplot(1,1,1, projection=ccrs.LambertConformal())
plt.title('Storm Advisory', fontsize=14, fontweight='bold')
points_gds = pd.DataFrame(dict(GUST=[165.0], LAT=[26.8],
LON=[-78.3], MSLP=[930.2]))
storminfo = f'''Max Wind Gusts: {points_gds.iloc[0]['GUST']:.0f} mph
Current Latitude: {points_gds.iloc[0]['LAT']:.1f}
Current Longitude: {points_gds.iloc[0]['LON']:.1f}
Central Pressure: {points_gds.iloc[0]['MSLP']:.2f} mb'''
props = dict(boxstyle='round', facecolor='wheat', alpha=0.5)
plt.text(0.05, 0.95, 'Testing', transform=ax.transAxes, va='top', bbox=props)
ax.coastlines()
ax.set_extent([-88,-70,25,50])
which produces this image:
To make that work I needed to change round (which is a Python built-in function) to the string 'round'. The text is formatted using f-strings ("formatted string literals"), and enclosed as a triple-quoted string to avoid needing to manually put in the newline ('\n') characters. Python's docs can tell you more about how to control the formatting of individual items.
I'm plotting the magnitude of a physiological response (z) as a function of trial (y) and time sample within the trial (x). I'm wondering if it's possible to add to each row (for each trial) a point indicating the reaction time for that trial.
def plot_evoked_response_map(ordered_samples_df, fig_name,
fig_path=fig_path, trial_end_sample_idx=1500):
jtplot.style('grade3', context='poster', fscale=1.4, spines=False, gridlines='--')
ordered_samples_df = ordered_samples_df.loc[ordered_samples_df.trial_sample < trial_end_sample_idx]
samples_sparse = ordered_samples_df[['trial_sample', 'trial_epoch',
'z_pupil_diameter']]
samples_sparse['reset_trial_epoch_idx'] = np.repeat(np.arange(0,n_trials),
trial_end_sample_idx)
# hack to get pivot to respect the stated order of the trial epochs
# otherwise, will sort the index ...
samples_pivot = samples_sparse.pivot(index='reset_trial_epoch_idx',
columns='trial_sample', values='z_pupil_diameter')
plt.figure(1)
fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(samples_pivot, fmt="g", cmap='viridis',
cbar_kws={'label': 'pupil diameter'}, robust=True, vmin=0, vmax=2)
plt.title(fig_name)
plt.ylabel('trial')
plt.savefig(os.path.join(fig_path, fig_name + '.png'))
return fig_name
_= plot_evoked_response_map(rt_ordered_samples_df, fig_name='RT_ordered_evoked_responses')
sample of the type of plot i'm generating
for i in range(5000):
weights = np.random.random(12)
weights /= np.sum(weights)
ER = np.sum(log_returns.mean() * weights) * 252
SD = np.sqrt(np.dot(weights.T , np.dot(an_cov,weights)))
rf = 0.02
Sharpe = (ER - rf)/SD
port_return.append(ER)
port_vol.append(SD)
port_sharpe.append(Sharpe)
s_weight.append(weights)
P = {'Portfolio Expected Return':port_return, 'Portfolio Standard
Deviation':port_vol, 'Stock Weights':s_weight , 'Portfolio Sharpe
Ratio':port_sharpe}
Q = pd.DataFrame(P)
plt.style.use('seaborn')
Q.plot.scatter(x='Portfolio Standard Deviation',y='Portfolio Expected
Return',c = 'Portfolio Sharpe Ratio',figsize=(12,9), grid=True,
cmap='RdYlGn')
plt.xlabel('Volatility (Std. Deviation)')
plt.ylabel('Expected Returns')
plt.title('random portfolios')
plt.show()
I have tried to plot this multiple times but how come the X axis is missing everytime ? The colorbar label , Y axis and title are normal but only X axis is not working.
I've tried to duplicate plotted graphs originally created with flotr2 for pdf output with matplotlib. I must say that flotr is way easyer to use... but that aside - im currently stuck at trying to format the dates /times on x-axis to desired format, which is hours:minutes with interval of every 2 hours, if period on x-axis is less than one day and year-month-day format if period is longer than 1 day with interval of one day.
I've read through numerous examples and tried to copy them, but outcome remains the same which is hours:minutes:seconds with 1 to 3 hour interval based on how long is the period.
My code:
colorMap = {
'speed': '#3388ff',
'fuel': '#ffaa33',
'din1': '#3bb200',
'din2': '#ff3333',
'satellites': '#bfbfff'
}
otherColors = ['#00A8F0','#C0D800','#CB4B4B','#4DA74D','#9440ED','#800080','#737CA1','#E4317F','#7D0541','#4EE2EC','#6698FF','#437C17','#7FE817','#FBB117']
plotMap = {}
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.dates as dates
fig = plt.figure(figsize=(22, 5), dpi = 300, edgecolor='k')
ax1 = fig.add_subplot(111)
realdata = data['data']
keys = realdata.keys()
if 'speed' in keys:
speed_index = keys.index('speed')
keys.pop(speed_index)
keys.insert(0, 'speed')
i = 0
for key in keys:
if key not in colorMap.keys():
color = otherColors[i]
otherColors.pop(i)
colorMap[key] = color
i += 1
label = u'%s' % realdata[keys[0]]['name']
ax1.set_ylabel(label)
plotMap[keys[0]] = {}
plotMap[keys[0]]['label'] = label
first_dates = [ r[0] for r in realdata[keys[0]]['data']]
date_range = first_dates[-1] - first_dates[0]
ax1.xaxis.reset_ticks()
if date_range > datetime.timedelta(days = 1):
ax1.xaxis.set_major_locator(dates.WeekdayLocator(byweekday = 1, interval=1))
ax1.xaxis.set_major_formatter(dates.DateFormatter('%Y-%m-%d'))
else:
ax1.xaxis.set_major_locator(dates.HourLocator(byhour=range(24), interval=2))
ax1.xaxis.set_major_formatter(dates.DateFormatter('%H:%M'))
ax1.xaxis.grid(True)
plotMap[keys[0]]['plot'] = ax1.plot_date(
dates.date2num(first_dates),
[r[1] for r in realdata[keys[0]]['data']], colorMap[keys[0]], xdate=True)
if len(keys) > 1:
first = True
for key in keys[1:]:
if first:
ax2 = ax1.twinx()
ax2.set_ylabel(u'%s' % realdata[key]['name'])
first = False
plotMap[key] = {}
plotMap[key]['label'] = u'%s' % realdata[key]['name']
plotMap[key]['plot'] = ax2.plot_date(
dates.date2num([ r[0] for r in realdata[key]['data']]),
[r[1] for r in realdata[key]['data']], colorMap[key], xdate=True)
plt.legend([value['plot'] for key, value in plotMap.iteritems()], [value['label'] for key, value in plotMap.iteritems()], loc = 2)
plt.savefig(path +"node.png", dpi = 300, bbox_inches='tight')
could someone point out why im not getting desired results, please?
Edit1:
I moved the formatting block after the plotting and seem to be getting better results now. They are still now desired results though. If period is less than day then i get ticks after every 2 hours (interval=2), but i wish i could get those ticks at even hours not uneven hours. Is that possible?
if date_range > datetime.timedelta(days = 1):
xax.set_major_locator(dates.DayLocator(bymonthday=range(1,32), interval=1))
xax.set_major_formatter(dates.DateFormatter('%Y-%m-%d'))
else:
xax.set_major_locator(dates.HourLocator(byhour=range(24), interval=2))
xax.set_major_formatter(dates.DateFormatter('%H:%M'))
Edit2:
This seemed to give me what i wanted:
if date_range > datetime.timedelta(days = 1):
xax.set_major_locator(dates.DayLocator(bymonthday=range(1,32), interval=1))
xax.set_major_formatter(dates.DateFormatter('%Y-%m-%d'))
else:
xax.set_major_locator(dates.HourLocator(byhour=range(0,24,2)))
xax.set_major_formatter(dates.DateFormatter('%H:%M'))
Alan
You are making this way harder on your self than you need to. matplotlib can directly plot against datetime objects. I suspect your problem is you are setting up the locators, then plotting, and the plotting is replacing your locators/formatters with the default auto versions. Try moving that block of logic about the locators to below the plotting loop.
I think that this could replace a fair chunk of your code:
d = datetime.timedelta(minutes=2)
now = datetime.datetime.now()
times = [now + d * j for j in range(500)]
ax = plt.gca() # get the current axes
ax.plot(times, range(500))
xax = ax.get_xaxis() # get the x-axis
adf = xax.get_major_formatter() # the the auto-formatter
adf.scaled[1./24] = '%H:%M' # set the < 1d scale to H:M
adf.scaled[1.0] = '%Y-%m-%d' # set the > 1d < 1m scale to Y-m-d
adf.scaled[30.] = '%Y-%m' # set the > 1m < 1Y scale to Y-m
adf.scaled[365.] = '%Y' # set the > 1y scale to Y
plt.draw()
doc for AutoDateFormatter
I achieved what i wanted by doing this:
if date_range > datetime.timedelta(days = 1):
xax.set_major_locator(dates.DayLocator(bymonthday=range(1,32), interval=1))
xax.set_major_formatter(dates.DateFormatter('%Y-%m-%d'))
else:
xax.set_major_locator(dates.HourLocator(byhour=range(0,24,2)))
xax.set_major_formatter(dates.DateFormatter('%H:%M'))