Feeding .npy (numpy files) into tensorflow data pipeline - numpy

Tensorflow seems to lack a reader for ".npy" files.
How can I read my data files into the new tensorflow.data.Dataset pipline?
My data doesn't fit in memory.
Each object is saved in a separate ".npy" file. each file contains 2 different ndarrays as features and a scalar as their label.

It is actually possible to read directly NPY files with TensorFlow instead of TFRecords. The key pieces are tf.data.FixedLengthRecordDataset and tf.io.decode_raw, along with a look at the documentation of the NPY format. For simplicity, let's suppose that a float32 NPY file containing an array with shape (N, K) is given, and you know the number of features K beforehand, as well as the fact that it is a float32 array. An NPY file is just a binary file with a small header and followed by the raw array data (object arrays are different, but we're considering numbers now). In short, you can find the size of this header with a function like this:
def npy_header_offset(npy_path):
with open(str(npy_path), 'rb') as f:
if f.read(6) != b'\x93NUMPY':
raise ValueError('Invalid NPY file.')
version_major, version_minor = f.read(2)
if version_major == 1:
header_len_size = 2
elif version_major == 2:
header_len_size = 4
else:
raise ValueError('Unknown NPY file version {}.{}.'.format(version_major, version_minor))
header_len = sum(b << (8 * i) for i, b in enumerate(f.read(header_len_size)))
header = f.read(header_len)
if not header.endswith(b'\n'):
raise ValueError('Invalid NPY file.')
return f.tell()
With this you can create a dataset like this:
import tensorflow as tf
npy_file = 'my_file.npy'
num_features = ...
dtype = tf.float32
header_offset = npy_header_offset(npy_file)
dataset = tf.data.FixedLengthRecordDataset([npy_file], num_features * dtype.size, header_bytes=header_offset)
Each element of this dataset contains a long string of bytes representing a single example. You can now decode it to obtain an actual array:
dataset = dataset.map(lambda s: tf.io.decode_raw(s, dtype))
The elements will have indeterminate shape, though, because TensorFlow does not keep track of the length of the strings. You can just enforce the shape since you know the number of features:
dataset = dataset.map(lambda s: tf.reshape(tf.io.decode_raw(s, dtype), (num_features,)))
Similarly, you can choose to perform this step after batching, or combine it in whatever way you feel like.
The limitation is that you had to know the number of features in advance. It is possible to extract it from the NumPy header, though, just a bit of a pain, and in any case very hardly from within TensorFlow, so the file names would need to be known in advance. Another limitation is that, as it is, the solution requires you to either use only one file per dataset or files that have the same header size, although if you know that all the arrays have the same size that should actually be the case.
Admittedly, if one considers this kind of approach it may just be better to have a pure binary file without headers, and either hard code the number of features or read them from a different source...

You can do it with tf.py_func, see the example here.
The parse function would simply decode the filename from bytes to string and call np.load.
Update: something like this:
def read_npy_file(item):
data = np.load(item.decode())
return data.astype(np.float32)
file_list = ['/foo/bar.npy', '/foo/baz.npy']
dataset = tf.data.Dataset.from_tensor_slices(file_list)
dataset = dataset.map(
lambda item: tuple(tf.py_func(read_npy_file, [item], [tf.float32,])))

Does your data fit into memory? If so, you can follow the instructions from the Consuming NumPy Arrays section of the docs:
Consuming NumPy arrays
If all of your input data fit in memory, the simplest way to create a Dataset from them is to convert them to tf.Tensor objects and use Dataset.from_tensor_slices().
# Load the training data into two NumPy arrays, for example using `np.load()`.
with np.load("/var/data/training_data.npy") as data:
features = data["features"]
labels = data["labels"]
# Assume that each row of `features` corresponds to the same row as `labels`.
assert features.shape[0] == labels.shape[0]
dataset = tf.data.Dataset.from_tensor_slices((features, labels))
In the case that the file doesn't fit into memory, it seems like the only recommended approach is to first convert the npy data into a TFRecord format, and then use the TFRecord data set format, which can be streamed without fully loading into memory.
Here is a post with some instructions.
FWIW, it seems crazy to me that TFRecord cannot be instantiated with a directory name or file name(s) of npy files directly, but it appears to be a limitation of plain Tensorflow.
If you can split the single large npy file into smaller files that each roughly represent one batch for training, then you could write a custom data generator in Keras that would yield only the data needed for the current batch.
In general, if your dataset cannot fit in memory, storing it as one single large npy file makes it very hard to work with, and preferably you should reformat the data first, either as TFRecord or as multiple npy files, and then use other methods.

Problem setup
I had a folder with images that were being fed into an InceptionV3 model for extraction of features. This seemed to be a huge bottleneck for the entire process. As a workaround, I extracted features from each image and then stored them on disk in a .npy format.
Now I had two folders, one for the images and one for the corresponding .npy files. There was an evident problem with the loading of .npy files in the tf.data.Dataset pipeline.
Workaround
I came across TensorFlow's official tutorial on show attend and tell which had a great workaround for the problem this thread (and I) were having.
Load numpy files
First off we need to create a mapping function that accepts the .npy file name and returns the numpy array.
# Load the numpy files
def map_func(feature_path):
feature = np.load(feature_path)
return feature
Use the tf.numpy_function
With the tf.numpy_function we can wrap any python function and use it as a TensorFlow op. The function must accept numpy object (which is exactly what we want).
We create a tf.data.Dataset with the list of all the .npy filenames.
dataset = tf.data.Dataset.from_tensor_slices(feature_paths)
We then use the map function of the tf.data.Dataset API to do the rest of our task.
# Use map to load the numpy files in parallel
dataset = dataset.map(lambda item: tf.numpy_function(
map_func, [item], tf.float16),
num_parallel_calls=tf.data.AUTOTUNE)

Related

Usage of spark.catalog.refreshTable(tablename) in S3

I want to write a CSV file after transforming my Spark data with a function. The obtained Spark dataframe after the transformation seems good, but when I want to write it into a CSV file, I have an error:
It is possible the underlying files have been updated. You can explicitly invalidate the cache in Spark by running 'REFRESH TABLE tableName' command in SQL or by recreating the Dataset/DataFrame involved.
But I really don't understand how to use the spark.catalog.refreshTable(tablename) function. I try to use it between the transformation and the file writing, but it said
AttributeError: 'DataFrame' object has no attribute '_get_object_id'
So I don't know how to deal with it...
#Create the function to resize the images and extract the features with mobilenetV2 model
def red_dim(width, height, nChannels, data):
#Transform image data to tensorflow compatoble format
images = []
for i in range(height.shape[0]):
x = np.ndarray(
shape=(height[i], width[i], nChannels[i]),
dtype=np.uint8,
buffer=data[i],
strides=(width[i] * nChannels[i], nChannels[i], 1))
images.append(preprocess_input(x))
#Resize images with the chosen size of the model
images = np.array(tf.image.resize(images, [IMAGE_SIZE, IMAGE_SIZE]))
#Load the model
model = load_model('models')
#Predict features for images
preds = model.predict(images).reshape(len(width), 3 * 3 * 1280)
#Return a pandas series with list of features for all images
return pd.Series(list(preds))
#Transform the function to a pandas udf function
#This allow to split the function in multiple chunks
red_dim_udf = pandas_udf(red_dim, returnType=ArrayType(DoubleType()))
#4 actions :
# apply the udf function defined just before
# cast the array of features to a string so it can be written in a csv
# select only the data that will be witten in the csv
# write the data -> where the error occurs
results=df.withColumn("dim_red", red_dim_udf(col("image.width"), col("image.height"), \
col("image.nChannels"), \
col("image.data"))) \
.withColumn("dim_red_string", lit(col("dim_red").cast("string")))
.select("image.origin", 'dim_red_string')
.repartition(5).write.csv(S3dir + '/results' + today)
Its a well-known issue where the underlying source data is getting updated while spark is processing on it.
I would suggest you to checkpoint i.e. move/copy the data to another directory before applying your transformations.
I think I can close my question, as I found the answer
If you have this type of error, it can also be because you have space in your S3 folders used to make your Dataframe, and Spark doesn't recognize the space character in the folder, so think the folder doesn't exist anymore...
But thanks #Constantine for your help !

How to convert a HyperSpectral image or an image with many bands in TFRecord format?

I've been trying to use a hyperspectral image dataset that was in .mat files. I found that using the scipy library with its loadmat function I can load the hyperspectral images and selecting some bands to see them as an RGB.
def RGBread(image):
images = loadmat(image).get('new_image')
return abs(images[:,:,(12,6,4)])
def SIread(image):
images = loadmat(image).get('new_image')
return abs(images[:,:,:])
After trying to implement the pix2pix architecture I found an unexpected error. When passing the list of the names of the dataset files by a function that is responsible for load the data(which are still .mat files), Tensor Flow does not have a direct method for this reading or coding, so I get these data with my RGBread and SIread method and then I turned them into tensors.
def load_image(filename, augment=True):
inimg = tf.cast( tf.convert_to_tensor(RGBread(ImagePATH+'/'+filename)
,dtype=tf.float32),tf.float32)[...,:3]
tgimg = tf.cast( tf.convert_to_tensor(SIread(ImagePATH+'/'+filename)
,dtype=tf.float32),tf.float32)[...,:12]
inimg, tgimg = resize(inimg, tgimg,IMG_HEIGH,IMG_WIDTH)
if augment:
inimg, tgimg = random_jitter(inimg, tgimg)
return inimg, tgimg
When loading an image with the load_image method, using the name and path of a single .mat file (a hyperspectral image) of my dataset as argument of my function the method worked perfectly.
plt.imshow(load_train_image(tr_urls[1])[0])
The problem started when I created my dataSet tensor, because my RGBread function does not receive a tensor as a parameter since loadmat('.mat') expects a string. Having the following error.
train_dataset = tf.data.Dataset.from_tensor_slices(tr_urls)
train_dataset = train_dataset.map(load_train_image,
num_parallel_calls=tf.data.experimental.AUTOTUNE)
TypeError: expected str, bytes or os.PathLike object, not Tensor
After reading a lot about reading .mat files I found a user who recommended passing the data to TFrecord format. I've been trying to do it but I couldn't. Someone could help me?
Rasterio may be useful here.
https://rasterio.readthedocs.io/en/latest/
It can read hyperspectral .tif which can be passed to tf.data using a tf.keras data-generator. It may be a bit slow and perhaps should be done before training rather than at runtime.
An alternative is to ask whether you need the geotiff metadata. If not, you can preprocess and save as numpy arrays for tfrecords.

Tensorflow: Load unknown TFRecord dataset

I got a TFRecord data file filename = train-00000-of-00001 which contains images of unknown size and maybe other information as well. I know that I can use dataset = tf.data.TFRecordDataset(filename) to open the dataset.
How can I extract the images from this file to save it as a numpy-array?
I also don't know if there is any other information saved in the TFRecord file such as labels or resolution. How can I get these information? How can I save them as a numpy-array?
I normally only use numpy-arrays and am not familiar with TFRecord data files.
1.) How can I extract the images from this file to save it as a numpy-array?
What you are looking for is this:
record_iterator = tf.python_io.tf_record_iterator(path=filename)
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
print(example)
# Exit after 1 iteration as this is purely demonstrative.
break
2.) How can I get these information?
Here is the official documentation. I strongly suggest that you read the documentation because it goes step by step in how to extract the values that you are looking for.
Essentially, you have to convert example to a dictionary. So if I wanted to find out what kind of information is in a tfrecord file, I would do something like this (in context with the code stated in the first question): dict(example.features.feature).keys()
3.) How can I save them as a numpy-array?
I would build upon the for loop mentioned above. So for every loop, it extracts the values that you are interested in and appends them to numpy arrays. If you want, you could create a pandas dataframe from those arrays and save it as a csv file.
But...
You seem to have multiple tfrecord files...tf.data.TFRecordDataset(filename) returns a dataset that is used to train models.
So in the event for multiple tfrecords, you would need a double for loop. The outer loop will go through each file. For that particular file, the inner loop will go through all of the tf.examples.
EDIT:
Converting to np.array()
import tensorflow as tf
from PIL import Image
import io
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
print(example)
# Get the values in a dictionary
example_bytes = dict(example.features.feature)['image_raw'].bytes_list.value[0]
image_array = np.array(Image.open(io.BytesIO(example_bytes)))
print(image_array)
break
Sources for the code above:
Base code
Converting bytes to PIL.JpegImagePlugin.JpegImageFile
Converting from PIL.JpegImagePlugin.JpegImageFile to np.array
Official Documentation for PIL
EDIT 2:
import tensorflow as tf
from PIL import Image
import io
import numpy as np
# Load image
cat_in_snow = tf.keras.utils.get_file(path, 'https://storage.googleapis.com/download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg')
#------------------------------------------------------Convert to tfrecords
def _bytes_feature(value):
"""Returns a bytes_list from a string / byte."""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def image_example(image_string):
feature = {
'image_raw': _bytes_feature(image_string),
}
return tf.train.Example(features=tf.train.Features(feature=feature))
with tf.python_io.TFRecordWriter('images.tfrecords') as writer:
image_string = open(cat_in_snow, 'rb').read()
tf_example = image_example(image_string)
writer.write(tf_example.SerializeToString())
#------------------------------------------------------
#------------------------------------------------------Begin Operation
record_iterator = tf.python_io.tf_record_iterator(path to tfrecord file)
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
print(example)
# OPTION 1: convert bytes to arrays using PIL and IO
example_bytes = dict(example.features.feature)['image_raw'].bytes_list.value[0]
PIL_array = np.array(Image.open(io.BytesIO(example_bytes)))
# OPTION 2: convert bytes to arrays using Tensorflow
with tf.Session() as sess:
TF_array = sess.run(tf.image.decode_jpeg(example_bytes, channels=3))
break
#------------------------------------------------------
#------------------------------------------------------Compare results
(PIL_array.flatten() != TF_array.flatten()).sum()
PIL_array == TF_array
PIL_img = Image.fromarray(PIL_array, 'RGB')
PIL_img.save('PIL_IMAGE.jpg')
TF_img = Image.fromarray(TF_array, 'RGB')
TF_img.save('TF_IMAGE.jpg')
#------------------------------------------------------
Remember that tfrecords is just simply a way of storing information for tensorflow models to read in an efficient manner.
I use PIL and IO to essentially convert the bytes to an image. IO takes the bytes and converts them to a file like object that PIL.Image can then read
Yes, there is a pure tensorflow way to do it: tf.image.decode_jpeg
Yes, there is a difference between the two approaches when you compare the two arrays
Which one should you pick? Tensorflow is not the way to go if you are worried about accuracy as stated in Tensorflow's github : "The TensorFlow-chosen default for jpeg decoding is IFAST, sacrificing image quality for speed". Credit for this information belongs to this post

How to read data from numpy files in TensorFlow? [duplicate]

I have read the CNN Tutorial on the TensorFlow and I am trying to use the same model for my project.
The problem is now in data reading. I have around 25000 images for training and around 5000 for testing and validation each. The files are in png format and I can read them and convert them into the numpy.ndarray.
The CNN example in the tutorials use a queue to fetch the records from the file list provided. I tried to create my own such binary file by reshaping my images into 1-D array and attaching a label value in the front of it. So my data looks like this
[[1,12,34,24,53,...,105,234,102],
[12,112,43,24,52,...,115,244,98],
....
]
The single row of the above array is of length 22501 size where the first element is the label.
I dumped the file to using pickle and the tried to read from the file using the
tf.FixedLengthRecordReader to read from the file as demonstrated in example
I am doing the same things as given in the cifar10_input.py to read the binary file and putting them into the record object.
Now when I read from the files the labels and the image values are different. I can understand the reason for this to be that pickle dumps the extra information of braces and brackets also in the binary file and they change the fixed length record size.
The above example uses the filenames and pass it to a queue to fetch the files and then the queue to read a single record from the file.
I want to know if I can pass the numpy array as defined above instead of the filenames to some reader and it can fetch records one by one from that array instead of the files.
Probably the easiest way to make your data work with the CNN example code is to make a modified version of read_cifar10() and use it instead:
Write out a binary file containing the contents of your numpy array.
import numpy as np
images_and_labels_array = np.array([[...], ...], # [[1,12,34,24,53,...,102],
# [12,112,43,24,52,...,98],
# ...]
dtype=np.uint8)
images_and_labels_array.tofile("/tmp/images.bin")
This file is similar to the format used in CIFAR10 datafiles. You might want to generate multiple files in order to get read parallelism. Note that ndarray.tofile() writes binary data in row-major order with no other metadata; pickling the array will add Python-specific metadata that TensorFlow's parsing routines do not understand.
Write a modified version of read_cifar10() that handles your record format.
def read_my_data(filename_queue):
class ImageRecord(object):
pass
result = ImageRecord()
# Dimensions of the images in the dataset.
label_bytes = 1
# Set the following constants as appropriate.
result.height = IMAGE_HEIGHT
result.width = IMAGE_WIDTH
result.depth = IMAGE_DEPTH
image_bytes = result.height * result.width * result.depth
# Every record consists of a label followed by the image, with a
# fixed number of bytes for each.
record_bytes = label_bytes + image_bytes
assert record_bytes == 22501 # Based on your question.
# Read a record, getting filenames from the filename_queue. No
# header or footer in the binary, so we leave header_bytes
# and footer_bytes at their default of 0.
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
result.key, value = reader.read(filename_queue)
# Convert from a string to a vector of uint8 that is record_bytes long.
record_bytes = tf.decode_raw(value, tf.uint8)
# The first bytes represent the label, which we convert from uint8->int32.
result.label = tf.cast(
tf.slice(record_bytes, [0], [label_bytes]), tf.int32)
# The remaining bytes after the label represent the image, which we reshape
# from [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(tf.slice(record_bytes, [label_bytes], [image_bytes]),
[result.depth, result.height, result.width])
# Convert from [depth, height, width] to [height, width, depth].
result.uint8image = tf.transpose(depth_major, [1, 2, 0])
return result
Modify distorted_inputs() to use your new dataset:
def distorted_inputs(data_dir, batch_size):
"""[...]"""
filenames = ["/tmp/images.bin"] # Or a list of filenames if you
# generated multiple files in step 1.
for f in filenames:
if not gfile.Exists(f):
raise ValueError('Failed to find file: ' + f)
# Create a queue that produces the filenames to read.
filename_queue = tf.train.string_input_producer(filenames)
# Read examples from files in the filename queue.
read_input = read_my_data(filename_queue)
reshaped_image = tf.cast(read_input.uint8image, tf.float32)
# [...] (Maybe modify other parameters in here depending on your problem.)
This is intended to be a minimal set of steps, given your starting point. It may be more efficient to do the PNG decoding using TensorFlow ops, but that would be a larger change.
In your question, you specifically asked:
I want to know if I can pass the numpy array as defined above instead of the filenames to some reader and it can fetch records one by one from that array instead of the files.
You can feed the numpy array to a queue directly, but it will be a more invasive change to the cifar10_input.py code than my other answer suggests.
As before, let's assume you have the following array from your question:
import numpy as np
images_and_labels_array = np.array([[...], ...], # [[1,12,34,24,53,...,102],
# [12,112,43,24,52,...,98],
# ...]
dtype=np.uint8)
You can then define a queue that contains the entire data as follows:
q = tf.FIFOQueue([tf.uint8, tf.uint8], shapes=[[], [22500]])
enqueue_op = q.enqueue_many([image_and_labels_array[:, 0], image_and_labels_array[:, 1:]])
...then call sess.run(enqueue_op) to populate the queue.
Another—more efficient—approach would be to feed records to the queue, which you could do from a parallel thread (see this answer for more details on how this would work):
# [With q as defined above.]
label_input = tf.placeholder(tf.uint8, shape=[])
image_input = tf.placeholder(tf.uint8, shape=[22500])
enqueue_single_from_feed_op = q.enqueue([label_input, image_input])
# Then, to enqueue a single example `i` from the array.
sess.run(enqueue_single_from_feed_op,
feed_dict={label_input: image_and_labels_array[i, 0],
image_input: image_and_labels_array[i, 1:]})
Alternatively, to enqueue a batch at a time, which will be more efficient:
label_batch_input = tf.placeholder(tf.uint8, shape=[None])
image_batch_input = tf.placeholder(tf.uint8, shape=[None, 22500])
enqueue_batch_from_feed_op = q.enqueue([label_batch_input, image_batch_input])
# Then, to enqueue a batch examples `i` through `j-1` from the array.
sess.run(enqueue_single_from_feed_op,
feed_dict={label_input: image_and_labels_array[i:j, 0],
image_input: image_and_labels_array[i:j, 1:]})
I want to know if I can pass the numpy array as defined above instead
of the filenames to some reader and it can fetch records one by one
from that array instead of the files.
tf.py_func, that wraps a python function and uses it as a TensorFlow operator, might help. Here's an example.
However, since you've mentioned that your images are stored in png files, I think the simplest solution would be to replace this:
reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
result.key, value = reader.read(filename_queue)
with this:
result.key, value = tf.WholeFileReader().read(filename_queue))
value = tf.image.decode_jpeg(value)

how to create hdf5 dataset with early allocate and no fill using h5py

I am trying to create a 78TB HDF5 dataset by filling it in a 2d block-partition manner. This is very slow when the block I'm writing spans rows that haven't ever been written to, because HDF5 is going in and allocating the diskspace and filling in the missing entries with zero.
Instead, I would like h5py to allocate the disk space for my dataset as soon as its created, and never fill it. This is possible with the C api according to Table 16 in the HDF5 Dataset documentation, but how can I do this with h5py, preferably with the high level interface?
I believe that you want to set the fill time to "never", with the H5Pset_fill_time() routine, but I don't know the h5py way to do that.
As Quincey suggested. You can use the low-level H5py API to create the dataset with the FILL_TIME_NEVER property then convert it back to a high-level Dataset object:
# create the rows dataset using the low-level api so I can force it to not do zero-filling, then convert to a high level object
spaceid = h5py.h5s.create_simple((numRows, numCols))
plist = h5py.h5p.create(h5py.h5p.DATASET_CREATE)
plist.set_fill_time(h5py.h5d.FILL_TIME_NEVER)
plist.set_chunk((rowchunk, colchunk))
datasetid = h5py.h5d.create(fout.id, "rows", h5py.h5t.NATIVE_DOUBLE, spaceid, plist)
rows = h5py.Dataset(datasetid)
Try specifying a chunk shape that matches your write pattern. For example if you are writing in blocks of 1024x1024, it would look like this:
import h5py
import numpy as np
f = h5py.File('mybigdset.h5', 'w')
dset = f.create_dataset('dset', (78*1024*1024, 1024*1024), dtype='f4', chunks=(1024,1024))
arr = np.random.rand(1024,1024)
dset[0:1024, 0:1024] = arr
f.close()
Thankfully, this didn't use 78TB of disk, the file size was just 4MB.