I want to do a replace in projection. Like a SQL Server REPLACE. I'm pretty sure we can handle that in code but looking for some shell commands.
Here is what I have
db.OrderHistoryHeader.aggregate([
{
$project:{
"_id":0,
"OrderNo":1 // I want to do Replace(OrderNo,'XYZ','ABC')
}
}
],
{
allowDiskUse:true
}).pretty();
There's no built-in operator for that currently but you can use $indexOfBytes combined with $substr and $concat.
db.OrderHistoryHeader.aggregate([
{
$addFields:
{
index: { $indexOfBytes: [ "$OrderNo", "XYZ" ] },
}
},
{
$project: {
OrderNo: {
$concat: [
{ $substr: [ "$OrderNo", 0, "$index" ] },
"ABC",
{ $substr: [ "$OrderNo", { $add: [3, "$index"] }, -1 ] }
]
}
}
},
{
$project: {
index: 0
}
}
])
Where 3 is the length of text being replaced.
You can use the replaceOne method
db.collection.replaceOne(filter, replacement, options)
From documentation:
Behavior
replaceOne() replaces the first matching document in the collection that matches the filter, using the replacement document.
upsert
If upsert: true and no documents match the filter, db.collection.replaceOne() creates a new document based on the replacement document.
Related
I am using the following query:
query myOrgRepos {
organization(login: "COMPANY_NAME") {
repositories(first: 100) {
edges {
node {
name
defaultBranchRef {
target {
... on Commit {
history(after: "2021-01-01T23:59:00Z", before: "2023-02-06T23:59:00Z", author: { emails: "USER_EMAIL" }) {
edges {
node {
oid
}
}
}
}
}
}
}
}
}
}
}
But with accurate names for the orginization and emails, and am persistantly getting the following error for every repo.
{
"type": "INVALID_CURSOR_ARGUMENTS",
"path": [
"organization",
"repositories",
"edges",
20,
"node",
"defaultBranchRef",
"target",
"history"
],
"locations": [
{
"line": 10,
"column": 29
}
],
"message": "`2021-01-01T23:59:00Z` does not appear to be a valid cursor."
},
If I remove the after field, it works just fine. However, I kind of need it. Acording to all the docs that I have read both after and before take the same timestamp. Can't tell where I am going wrong here.
I have tried:
to narrow the gap between before and after
return only a single repository
remove after (works fine without it)
I have a collection "Owners" and I want to return a list of "Owner" matching a filter (any filter), plus the count of "Pet" from the "Pets" collection for that owner, except I don't want the dead pets. (made up example)
I need the returned documents to look exactly like an "Owner" document with the addition of the "petCount" field because I'm using Java Pojos with the Mongo Java driver.
I'm using AWS DocumentDB that does not support $lookup with filters yet. If it did I would use this and I'd be done:
db.Owners.aggregate( [
{ $match: {_id: UUID("b13e733d-2686-4266-a686-d3dae6501887")} },
{ $lookup: { from: 'Pets', as: 'pets', 'let': { ownerId: '$_id' }, pipeline: [ { $match: { $expr: { $ne: ['$state', 'DEAD'] } } } ] } },
{ $addFields: { petCount: { $size: '$pets' } } },
{ $project: { pets: 0 } }
]).pretty()
But since it doesn't this is what I got so far:
db.Owners.aggregate( [
{ $match: {_id: { $in: [ UUID("cbb921f6-50f8-4b0c-833f-934998e5fbff") ] } } },
{ $lookup: { from: 'Pets', localField: '_id', foreignField: 'ownerId', as: 'pets' } },
{ $unwind: { path: '$pets', preserveNullAndEmptyArrays: true } },
{ $match: { 'pets.state': { $ne: 'DEAD' } } },
{ "$group": {
"_id": "$_id",
"doc": { "$first": "$$ROOT" },
"pets": { "$push": "$pets" }
}
},
{ $addFields: { "doc.petCount": { $size: '$pets' } } },
{ $replaceRoot: { "newRoot": "$doc" } },
{ $project: { pets: 0 } }
]).pretty()
This works perfectly, except if an Owner only has "DEAD" pets, then the owner doesn't get returned because all the "document copies" got filtered out by the $match. I'd need the parent document to be returned with petCount = 0 when ALL of them are "DEAD". I cannot figure out how to do this.
Any ideas?
These are the supported operations for DocDB 4.0 https://docs.amazonaws.cn/en_us/documentdb/latest/developerguide/mongo-apis.html
EDIT: update to use $filter as $reduce not supported by aws document DB
You can use $filter to keep only not DEAD pets in the lookup array, then count the size of the remaining array.
Here is the Mongo playground for your reference.
$reduce version
You can use $reduce in your aggregation pipeline to to a conditional sum for the state.
Here is Mongo playground for your reference.
As of January 2022, Amazon DocumentDB added support for $reduce, the solution posted above should work for you.
Reference.
I'm a newbie on MongoDB. And I need help. I have a small project with SQLite (7 tables and 1 view). And I need to make this project on MongoDB, I'm using Studio 3T, I'm already migrate SQLite tables to MongoDB collections, but now I need to make (VIEW/TEST) for test this project. Please help how to write this SQL script with MongoDB.
SQLITE:
MongoDB:
SQLIte script I want to make with MongoDB:
CREATE VIEW rezultatas AS
SELECT p.pavadinimas AS detales_pavadinimas,
SUM(d.pagamintas_kiekis) AS pagamintas_kiekis,
SUM(z.gamybos_islaidos) AS vidutine_kaina,
STRFTIME('%m', d.pagaminimo_data) AS menuo,
STRFTIME('%Y', d.pagaminimo_data) AS metai
FROM detales d,
zinynas z,
produktas p
WHERE (z.detale_id = p._id_) AND
(d.detale_id = z.detale_id) AND
(d.pagaminimo_data >= z.data_nuo) AND
NOT EXISTS (
SELECT *
FROM zinynas
WHERE (d.detale_id = detale_id) AND
(d.pagaminimo_data >= data_nuo) AND
(z.data_nuo < data_nuo)
)
GROUP BY p.pavadinimas,
STRFTIME('%m', d.pagaminimo_data),
STRFTIME('%Y', d.pagaminimo_data)
I had to guess some things due to the lack of schemes but the basic layout should work.
We're going to use $createView with these parameters as input:
db.createView('rezultatas', 'produktas', pipeline)
Meaning our pipeline creating the view starts with the produktas collection.
The pipeline to use:
[
{ // match the documents from the zinyas collection.
$lookup:
{
from: "zinynas",
let: { produktas_id: "$_id" }, // i'm guessing its _id
pipeline: [
{ $match:
{ $expr: { $eq: [ "$detale_id", "$$produktas_id" ] }}
},
],
as: "z"
}
},
{
$unwind: "$z"
},
{ // match the documents from the detales collection. only keep the one with maximum data_nuo value.
$lookup:
{
from: "detales",
let: { z_detale_id: "$z.detale_id", z_data_nuo: "$z.data_nuo" },
pipeline: [
{ $match:
{
$and: [
{ $expr: { $eq: [ "$detale_id", "$$z_detale_id" ] }},
{ $expr: { $gte: [ "$pagaminimo_data", "$$z_data_nuo"]}}
]
}
},
{
$sort: {
data_nuo: -1
}
},
{
$limit: 1
}
],
as: "d"
}
},
{
$unwind: "$d"
},
{ // end up saving the fields we want.
$group: {
_id: { pavadinimas : "$pavadinimas", month: {$month: "$d.pagaminimo_data"}, year: {$year: "$d.pagaminimo_data"}},
pagamintas_kiekis: {$sum: "$d.pagamintas_kiekis"},
vidutine_kaina: {$sum: "$z.gamybos_islaidos"},
month: {$first: {$month: "$d.pagaminimo_data"}},
year: {$first: {$year: "$d.pagaminimo_data"}},
detales_pavadinimas: {$first: "$pavadinimas"}
}
}
]
I have this query that provides me the join I want to:
db.summoners.aggregate([
{ "$match": { "nick":"Luispfj" } },
{ "$unwind": "$matches" },
{
"$lookup": {
"from":"matches",
"localField":"matches.gameId",
"foreignField":"gameId",
"as":"fullMatches"
}
},
{ "$unwind": "$fullMatches" },
{
"$group": {
"_id": null,
"matches": { "$push":"$fullMatches" }
}
}
])
But when I run the unwind function the null entries are gone. How do I retrieve them (with their respective "gameId"s, if possible?
Also, is there a way to retrieve only the matches array, instead of it being a subproperty of the "null-id-object" it creates?
$unwind takes an optional field preserveNullAndEmptyArrays which by default is false. If you set it to true, unwind will output the documents that are null. Read more about $unwind
{
"$unwind": {
path: "$fullMatches",
preserveNullAndEmptyArrays: true
}
},
I want to regex search an integer value in MongoDB. Is this possible?
I'm building a CRUD type interface that allows * for wildcards on the various fields. I'm trying to keep the UI consistent for a few fields that are integers.
Consider:
> db.seDemo.insert({ "example" : 1234 });
> db.seDemo.find({ "example" : 1234 });
{ "_id" : ObjectId("4bfc2bfea2004adae015220a"), "example" : 1234 }
> db.seDemo.find({ "example" : /^123.*/ });
>
As you can see, I insert an object and I'm able to find it by the value. If I try a simple regex, I can't actually find the object.
Thanks!
If you are wanting to do a pattern match on numbers, the way to do it in mongo is use the $where expression and pass in a pattern match.
> db.test.find({ $where: "/^123.*/.test(this.example)" })
{ "_id" : ObjectId("4bfc3187fec861325f34b132"), "example" : 1234 }
I am not a big fan of using the $where query operator because of the way it evaluates the query expression, it doesn't use indexes and the security risk if the query uses user input data.
Starting from MongoDB 4.2 you can use the $regexMatch|$regexFind|$regexFindAll available in MongoDB 4.1.9+ and the $expr to do this.
let regex = /123/;
$regexMatch and $regexFind
db.col.find({
"$expr": {
"$regexMatch": {
"input": {"$toString": "$name"},
"regex": /123/
}
}
})
$regexFinAll
db.col.find({
"$expr": {
"$gt": [
{
"$size": {
"$regexFindAll": {
"input": {"$toString": "$name"},
"regex": "123"
}
}
},
0
]
}
})
From MongoDB 4.0 you can use the $toString operator which is a wrapper around the $convert operator to stringify integers.
db.seDemo.aggregate([
{ "$redact": {
"$cond": [
{ "$gt": [
{ "$indexOfCP": [
{ "$toString": "$example" },
"123"
] },
-1
] },
"$$KEEP",
"$$PRUNE"
]
}}
])
If what you want is retrieve all the document which contain a particular substring, starting from release 3.4, you can use the $redact operator which allows a $conditional logic processing.$indexOfCP.
db.seDemo.aggregate([
{ "$redact": {
"$cond": [
{ "$gt": [
{ "$indexOfCP": [
{ "$toLower": "$example" },
"123"
] },
-1
] },
"$$KEEP",
"$$PRUNE"
]
}}
])
which produces:
{
"_id" : ObjectId("579c668c1c52188b56a235b7"),
"example" : 1234
}
{
"_id" : ObjectId("579c66971c52188b56a235b9"),
"example" : 12334
}
Prior to MongoDB 3.4, you need to $project your document and add another computed field which is the string value of your number.
The $toLower and his sibling $toUpper operators respectively convert a string to lowercase and uppercase but they have a little unknown feature which is that they can be used to convert an integer to string.
The $match operator returns all those documents that match your pattern using the $regex operator.
db.seDemo.aggregate(
[
{ "$project": {
"stringifyExample": { "$toLower": "$example" },
"example": 1
}},
{ "$match": { "stringifyExample": /^123.*/ } }
]
)
which yields:
{
"_id" : ObjectId("579c668c1c52188b56a235b7"),
"example" : 1234,
"stringifyExample" : "1234"
}
{
"_id" : ObjectId("579c66971c52188b56a235b9"),
"example" : 12334,
"stringifyExample" : "12334"
}
Now, if what you want is retrieve all the document which contain a particular substring, the easier and better way to do this is in the upcoming release of MongoDB (as of this writing) using the $redact operator which allows a $conditional logic processing.$indexOfCP.
db.seDemo.aggregate([
{ "$redact": {
"$cond": [
{ "$gt": [
{ "$indexOfCP": [
{ "$toLower": "$example" },
"123"
] },
-1
] },
"$$KEEP",
"$$PRUNE"
]
}}
])