Parsing binary structure with Perl6 Grammar - raku

What is the best option to parse a binary structure with Perl6 .
in Perl5 we have the pack/unpack methods on Perl6 they seems experimental
is it possible to use Perl6 grammar to parse binary data let's say i have a file which have records on the following binary format :
struct record {
short int ut_type;
char ut_line[UT_LINESIZE];
char ut_id[4];
char ut_user[UT_NAMESIZE];
char ut_host[UT_HOSTSIZE];
}
is it possible to parse this file with Perl6 grammar ?

What is the best option to parse a binary structure with Perl6?
Especially given that you know about P5's pack/unpack, the new P5pack module is plausibly the appropriate solution. (I haven't tested it. It's new. Aiui it doesn't implement everything and it doesn't mimic P5's pack slavishly. But it's Liz.)
If the new pure P6 implementation of P5's pack interface linked above does not do what you need done, another obvious solution is using the original P5 functions, executed by a regular perl 5 binary, in your P6 code. The following is incomplete / untested but I mean something roughly like:
use Inline::Perl5 ; my \P5 = Inline::Perl5.new ;
my $mem = Buf ... ;
my $hex = P5.call('unpack', 'H*', $mem) ;
(Or, conversely, write the mainline as P5 code, adding P6 code via Inline::Perl6.)
In the current version of P6, which is 6.c, grammars can only process text.
2 years ago P6er "skids" wrote:
"There are enough people wanting binary grammars that I think it will come to be" (written in 2016).
At that time they also put together the following related links:
skid's then new idea for a packing foo { template bar { ... } } construct plus their much older "very old, low level types thoughts".
ShimmerFairy's "thoughts on possible binary grammars in P6 (incomplete)"
Juerd's "RFC: A more Perl6-esque "unpack"".
smls's "Binary Parsing in Perl 6".
masak's "A first approach to pack/unpack in Perl 6".
jnthn's "talk on Grammar::Generative" (video).

I totally agree with raiph's answer and comments, and just want to add a bit.
I think about two types of parsing, one where you can figure it out based on what you find internally, and one where you are using an external schema that describes how the data are arranged. Binary data could be arranged either way msgpack is an example of the former for binary data.
The example you are using, unpacking a binary struct is an example of the later.
It looks like NativeCall CStructs are almost up to doing what you want directly. Perhaps it can already do it and I'm just not aware, but it seems to be lacking the ability to express an embedded sized array. (Is that working yet?)
Without that, your first job is to figure out the structure you're trying to unpack. There are several ways to do this. The first is the easiest, but perhaps most error-prone -- just look at the struct. (I'm going to make up some fake defines so I have real numbers to work with):
record.h:
#define UT_LINESIZE 80
#define UT_IDSIZE 4
#define UT_NAMESIZE 50
#define UT_HOSTSIZE 20
struct record {
short int ut_type;
char ut_line[UT_LINESIZE];
char ut_id[UT_IDSIZE];
char ut_user[UT_NAMESIZE];
char ut_host[UT_HOSTSIZE];
};
Looking at that, I can capture the offset and size of each field:
constant \type-size := nativesizeof(int16);
constant \line-size := 80;
constant \id-size := 4;
constant \user-size := 50;
constant \host-size := 20;
constant \record-size := type-size + line-size + id-size + user-size + host-size;
constant \type-offset := 0;
constant \line-offset := type-offset + type-size;
constant \id-offset := line-offset + line-size;
constant \user-offset := id-offset + id-size;
constant \host-offset := user-offset + id-size;
Some caveats here -- you have to understand your format enough to take into account any alignment or padding. Your example here works more easily than some others might.
That gives us enough information to figure out which bytes in the binary structure map to each field.
Next you need to convert each chunk of bytes into the right Perl type. NativeCall's nativecast routine can do that for you. It can easily turn a chunk of bytes into many Perl data types.
I'm going to make the assumption that your fields are C strings, always correctly terminated by NULs, and are suitable for decoding as UTF8. You can tweak this for other particular cases.
use NativeCall;
class record {
has Int $.ut-type;
has Str $.ut-line;
has Str $.ut-id;
has Str $.ut-user;
has Str $.ut-host;
}
sub unpack-buf(Mu:U $type, Blob $buf, $offset, $size) {
nativecast($type, CArray[uint8].new($buf[$offset ..^ $offset+$size]))
}
sub unpack-record($buf) {
record.new(
ut-type => unpack-buf(int16, $buf, type-offset, type-size),
ut-line => unpack-buf(Str, $buf, line-offset, line-size),
ut-id => unpack-buf(Str, $buf, id-offset, id-size),
ut-user => unpack-buf(Str, $buf, user-offset, user-size),
ut-host => unpack-buf(Str, $buf, host-offset, host-size)
)
}
Then you can seek/read the binary data out of your data file to grab individual records, or just walk through all of it:
my #data = gather {
given 'data'.IO.open(:bin) {
while .read(record-size) -> $buf {
take unpack-record($buf)
}
.close
}
}
Because we've manually copied things from the C struct definition, any changes to that have to be updated, and alignment/padding may always bite us.
Another option is to directly read the C header file and use sizeof() and offsetof() to hand us all the numbers. That will naturally take into account alignment/padding. You can even use TCC from within your Perl code to directly access the header file. Instead of all the constant lines above, you can use this to pull everything right out of the C .h file.
my $tcc = TCC.new('');
$tcc.compile: q:to/END/;
#include <stddef.h>
#include "record.h"
size_t record_size() { return sizeof(struct record); }
size_t type_offset() { return offsetof(struct record, ut_type); }
size_t type_size() { return sizeof(short int); }
size_t line_offset() { return offsetof(struct record, ut_line); }
size_t line_size() { return UT_LINESIZE; }
size_t id_offset() { return offsetof(struct record, ut_id); }
size_t id_size() { return UT_IDSIZE; }
size_t user_offset() { return offsetof(struct record, ut_user); }
size_t user_size() { return UT_NAMESIZE; }
size_t host_offset() { return offsetof(struct record, ut_host); }
size_t host_size() { return UT_HOSTSIZE; }
END
$tcc.relocate;
my &record-size := $tcc.bind('record_size', :(--> size_t));
my &type-offset := $tcc.bind('type_offset', :(--> size_t));
my &type-size := $tcc.bind('type_size', :(--> size_t));
my &line-offset := $tcc.bind('line_offset', :(--> size_t));
my &line-size := $tcc.bind('line_size', :(--> size_t));
my &id-offset := $tcc.bind('id_offset', :(--> size_t));
my &id-size := $tcc.bind('id_size', :(--> size_t));
my &user-offset := $tcc.bind('user_offset', :(--> size_t));
my &user-size := $tcc.bind('user_size', :(--> size_t));
my &host-offset := $tcc.bind('host_offset', :(--> size_t));
my &host-size := $tcc.bind('host_size', :(--> size_t));

Related

Parallel Dynamic Programming with CUDA

It is my first attempt to implement recursion with CUDA. The goal is to extract all the combinations from a set of chars "12345" using the power of CUDA to parallelize dynamically the task. Here is my kernel:
__device__ char route[31] = { "_________________________"};
__device__ char init[6] = { "12345" };
__global__ void Recursive(int depth) {
// up to depth 6
if (depth == 5) return;
// newroute = route - idx
int x = depth * 6;
printf("%s\n", route);
int o = 0;
int newlen = 0;
for (int i = 0; i<6; ++i)
{
if (i != threadIdx.x)
{
route[i+x-o] = init[i];
newlen++;
}
else
{
o = 1;
}
}
Recursive<<<1,newlen>>>(depth + 1);
}
__global__ void RecursiveCount() {
Recursive <<<1,5>>>(0);
}
The idea is to exclude 1 item (the item corresponding to the threadIdx) in each different thread. In each recursive call, using the variable depth, it works over a different base (variable x) on the route device variable.
I expect the kernel prompts something like:
2345_____________________
1345_____________________
1245_____________________
1234_____________________
2345_345_________________
2345_245_________________
2345_234_________________
2345_345__45_____________
2345_345__35_____________
2345_345__34_____________
..
2345_245__45_____________
..
But it prompts ...
·_____________
·_____________
·_____________
·_____________
·_____________
·2345
·2345
·2345
·2345
...
What I´m doing wrong?
What I´m doing wrong?
I may not articulate every problem with your code, but these items should get you a lot closer.
I recommend providing a complete example. In my view it is basically required by Stack Overflow, see item 1 here, note use of the word "must". Your example is missing any host code, including the original kernel call. It's only a few extra lines of code, why not include it? Sure, in this case, I can deduce what the call must have been, but why not just include it? Anyway, based on the output you indicated, it seems fairly evident the launch configuration of the host launch would have to be <<<1,1>>>.
This doesn't seem to be logical to me:
I expect the kernel prompts something like:
2345_____________________
The very first thing your kernel does is print out the route variable, before making any changes to it, so I would expect _____________________. However we can "fix" this by moving the printout to the end of the kernel.
You may be confused about what a __device__ variable is. It is a global variable, and there is only one copy of it. Therefore, when you modify it in your kernel code, every thread, in every kernel, is attempting to modify the same global variable, at the same time. That cannot possibly have orderly results, in any thread-parallel environment. I chose to "fix" this by making a local copy for each thread to work on.
You have an off-by-1 error, as well as an extent error in this loop:
for (int i = 0; i<6; ++i)
The off-by-1 error is due to the fact that you are iterating over 6 possible items (that is, i can reach a value of 5) but there are only 5 items in your init variable (the 6th item being a null terminator. The correct indexing starts out over 0-4 (with one of those being skipped). On subsequent iteration depths, its necessary to reduce this indexing extent by 1. Note that I've chosen to fix the first error here by increasing the length of init. There are other ways to fix, of course. My method inserts an extra _ between depths in the result.
You assume that at each iteration depth, the correct choice of items is the same, and in the same order, i.e. init. However this is not the case. At each depth, the choices of items must be selected not from the unchanging init variable, but from the choices passed from previous depth. Therefore we need a local, per-thread copy of init also.
A few other comments about CUDA Dynamic Parallelism (CDP). When passing pointers to data from one kernel scope to a child scope, local space pointers cannot be used. Therefore I allocate for the local copy of route from the heap, so it can be passed to child kernels. init can be deduced from route, so we can use an ordinary local variable for myinit.
You're going to quickly hit some dynamic parallelism (and perhaps memory) limits here if you continue this. I believe the total number of kernel launches for this is 5^5, which is 3125 (I'm doing this quickly, I may be mistaken). CDP has a pending launch limit of 2000 kernels by default. We're not hitting this here according to what I see, but you'll run into that sooner or later if you increase the depth or width of this operation. Furthermore, in-kernel allocations from the device heap are by default limited to 8KB. I don't seem to be hitting that limit, but probably I am, so my design should probably be modified to fix that.
Finally, in-kernel printf output is limited to the size of a particular buffer. If this technique is not already hitting that limit, it will soon if you increase the width or depth.
Here is a worked example, attempting to address the various items above. I'm not claiming it is defect free, but I think the output is closer to your expectations. Note that due to character limits on SO answers, I've truncated/excerpted some of the output.
$ cat t1639.cu
#include <stdio.h>
__device__ char route[31] = { "_________________________"};
__device__ char init[7] = { "12345_" };
__global__ void Recursive(int depth, const char *oroute) {
char *nroute = (char *)malloc(31);
char myinit[7];
if (depth == 0) memcpy(myinit, init, 6);
else memcpy(myinit, oroute+(depth-1)*6, 6);
myinit[6] = 0;
if (nroute == NULL) {printf("oops\n"); return;}
memcpy(nroute, oroute, 30);
nroute[30] = 0;
// up to depth 6
if (depth == 5) return;
// newroute = route - idx
int x = depth * 6;
//printf("%s\n", nroute);
int o = 0;
int newlen = 0;
for (int i = 0; i<(6-depth); ++i)
{
if (i != threadIdx.x)
{
nroute[i+x-o] = myinit[i];
newlen++;
}
else
{
o = 1;
}
}
printf("%s\n", nroute);
Recursive<<<1,newlen>>>(depth + 1, nroute);
}
__global__ void RecursiveCount() {
Recursive <<<1,5>>>(0, route);
}
int main(){
RecursiveCount<<<1,1>>>();
cudaDeviceSynchronize();
}
$ nvcc -o t1639 t1639.cu -rdc=true -lcudadevrt -arch=sm_70
$ cuda-memcheck ./t1639
========= CUDA-MEMCHECK
2345_____________________
1345_____________________
1245_____________________
1235_____________________
1234_____________________
2345__345________________
2345__245________________
2345__235________________
2345__234________________
2345__2345_______________
2345__345___45___________
2345__345___35___________
2345__345___34___________
2345__345___345__________
2345__345___45____5______
2345__345___45____4______
2345__345___45____45_____
2345__345___45____5______
2345__345___45____5_____5
2345__345___45____4______
2345__345___45____4_____4
2345__345___45____45____5
2345__345___45____45____4
2345__345___35____5______
2345__345___35____3______
2345__345___35____35_____
2345__345___35____5______
2345__345___35____5_____5
2345__345___35____3______
2345__345___35____3_____3
2345__345___35____35____5
2345__345___35____35____3
2345__345___34____4______
2345__345___34____3______
2345__345___34____34_____
2345__345___34____4______
2345__345___34____4_____4
2345__345___34____3______
2345__345___34____3_____3
2345__345___34____34____4
2345__345___34____34____3
2345__345___345___45_____
2345__345___345___35_____
2345__345___345___34_____
2345__345___345___45____5
2345__345___345___45____4
2345__345___345___35____5
2345__345___345___35____3
2345__345___345___34____4
2345__345___345___34____3
2345__245___45___________
2345__245___25___________
2345__245___24___________
2345__245___245__________
2345__245___45____5______
2345__245___45____4______
2345__245___45____45_____
2345__245___45____5______
2345__245___45____5_____5
2345__245___45____4______
2345__245___45____4_____4
2345__245___45____45____5
2345__245___45____45____4
2345__245___25____5______
2345__245___25____2______
2345__245___25____25_____
2345__245___25____5______
2345__245___25____5_____5
2345__245___25____2______
2345__245___25____2_____2
2345__245___25____25____5
2345__245___25____25____2
2345__245___24____4______
2345__245___24____2______
2345__245___24____24_____
2345__245___24____4______
2345__245___24____4_____4
2345__245___24____2______
2345__245___24____2_____2
2345__245___24____24____4
2345__245___24____24____2
2345__245___245___45_____
2345__245___245___25_____
2345__245___245___24_____
2345__245___245___45____5
2345__245___245___45____4
2345__245___245___25____5
2345__245___245___25____2
2345__245___245___24____4
2345__245___245___24____2
2345__235___35___________
2345__235___25___________
2345__235___23___________
2345__235___235__________
2345__235___35____5______
2345__235___35____3______
2345__235___35____35_____
2345__235___35____5______
2345__235___35____5_____5
2345__235___35____3______
2345__235___35____3_____3
2345__235___35____35____5
2345__235___35____35____3
2345__235___25____5______
2345__235___25____2______
2345__235___25____25_____
2345__235___25____5______
2345__235___25____5_____5
2345__235___25____2______
2345__235___25____2_____2
2345__235___25____25____5
2345__235___25____25____2
2345__235___23____3______
2345__235___23____2______
2345__235___23____23_____
2345__235___23____3______
2345__235___23____3_____3
2345__235___23____2______
2345__235___23____2_____2
2345__235___23____23____3
2345__235___23____23____2
2345__235___235___35_____
2345__235___235___25_____
2345__235___235___23_____
2345__235___235___35____5
2345__235___235___35____3
2345__235___235___25____5
2345__235___235___25____2
2345__235___235___23____3
2345__235___235___23____2
2345__234___34___________
2345__234___24___________
2345__234___23___________
2345__234___234__________
2345__234___34____4______
2345__234___34____3______
2345__234___34____34_____
2345__234___34____4______
2345__234___34____4_____4
2345__234___34____3______
2345__234___34____3_____3
2345__234___34____34____4
2345__234___34____34____3
2345__234___24____4______
2345__234___24____2______
2345__234___24____24_____
2345__234___24____4______
2345__234___24____4_____4
2345__234___24____2______
2345__234___24____2_____2
2345__234___24____24____4
2345__234___24____24____2
2345__234___23____3______
2345__234___23____2______
2345__234___23____23_____
2345__234___23____3______
2345__234___23____3_____3
2345__234___23____2______
2345__234___23____2_____2
2345__234___23____23____3
2345__234___23____23____2
2345__234___234___34_____
2345__234___234___24_____
2345__234___234___23_____
2345__234___234___34____4
2345__234___234___34____3
2345__234___234___24____4
2345__234___234___24____2
2345__234___234___23____3
2345__234___234___23____2
2345__2345__345__________
2345__2345__245__________
2345__2345__235__________
2345__2345__234__________
2345__2345__345___45_____
2345__2345__345___35_____
2345__2345__345___34_____
2345__2345__345___45____5
2345__2345__345___45____4
2345__2345__345___35____5
2345__2345__345___35____3
2345__2345__345___34____4
2345__2345__345___34____3
2345__2345__245___45_____
2345__2345__245___25_____
2345__2345__245___24_____
2345__2345__245___45____5
2345__2345__245___45____4
2345__2345__245___25____5
2345__2345__245___25____2
2345__2345__245___24____4
2345__2345__245___24____2
2345__2345__235___35_____
2345__2345__235___25_____
2345__2345__235___23_____
2345__2345__235___35____5
2345__2345__235___35____3
2345__2345__235___25____5
2345__2345__235___25____2
2345__2345__235___23____3
2345__2345__235___23____2
2345__2345__234___34_____
2345__2345__234___24_____
2345__2345__234___23_____
2345__2345__234___34____4
2345__2345__234___34____3
2345__2345__234___24____4
2345__2345__234___24____2
2345__2345__234___23____3
2345__2345__234___23____2
1345__345________________
1345__145________________
1345__135________________
1345__134________________
1345__1345_______________
1345__345___45___________
1345__345___35___________
1345__345___34___________
1345__345___345__________
1345__345___45____5______
1345__345___45____4______
1345__345___45____45_____
1345__345___45____5______
1345__345___45____5_____5
1345__345___45____4______
1345__345___45____4_____4
1345__345___45____45____5
1345__345___45____45____4
1345__345___35____5______
1345__345___35____3______
1345__345___35____35_____
1345__345___35____5______
1345__345___35____5_____5
1345__345___35____3______
1345__345___35____3_____3
1345__345___35____35____5
1345__345___35____35____3
1345__345___34____4______
1345__345___34____3______
1345__345___34____34_____
1345__345___34____4______
1345__345___34____4_____4
1345__345___34____3______
1345__345___34____3_____3
1345__345___34____34____4
1345__345___34____34____3
1345__345___345___45_____
1345__345___345___35_____
1345__345___345___34_____
1345__345___345___45____5
1345__345___345___45____4
1345__345___345___35____5
1345__345___345___35____3
1345__345___345___34____4
1345__345___345___34____3
1345__145___45___________
1345__145___15___________
1345__145___14___________
1345__145___145__________
1345__145___45____5______
1345__145___45____4______
1345__145___45____45_____
1345__145___45____5______
1345__145___45____5_____5
1345__145___45____4______
1345__145___45____4_____4
1345__145___45____45____5
1345__145___45____45____4
1345__145___15____5______
1345__145___15____1______
1345__145___15____15_____
1345__145___15____5______
1345__145___15____5_____5
1345__145___15____1______
1345__145___15____1_____1
1345__145___15____15____5
1345__145___15____15____1
1345__145___14____4______
1345__145___14____1______
1345__145___14____14_____
1345__145___14____4______
1345__145___14____4_____4
1345__145___14____1______
1345__145___14____1_____1
1345__145___14____14____4
1345__145___14____14____1
1345__145___145___45_____
1345__145___145___15_____
1345__145___145___14_____
1345__145___145___45____5
1345__145___145___45____4
1345__145___145___15____5
1345__145___145___15____1
1345__145___145___14____4
1345__145___145___14____1
1345__135___35___________
1345__135___15___________
1345__135___13___________
1345__135___135__________
1345__135___35____5______
1345__135___35____3______
1345__135___35____35_____
1345__135___35____5______
1345__135___35____5_____5
1345__135___35____3______
1345__135___35____3_____3
1345__135___35____35____5
1345__135___35____35____3
1345__135___15____5______
1345__135___15____1______
1345__135___15____15_____
1345__135___15____5______
1345__135___15____5_____5
1345__135___15____1______
1345__135___15____1_____1
1345__135___15____15____5
1345__135___15____15____1
1345__135___13____3______
1345__135___13____1______
1345__135___13____13_____
1345__135___13____3______
1345__135___13____3_____3
1345__135___13____1______
1345__135___13____1_____1
1345__135___13____13____3
1345__135___13____13____1
1345__135___135___35_____
1345__135___135___15_____
1345__135___135___13_____
1345__135___135___35____5
1345__135___135___35____3
1345__135___135___15____5
1345__135___135___15____1
1345__135___135___13____3
1345__135___135___13____1
1345__134___34___________
1345__134___14___________
1345__134___13___________
1345__134___134__________
1345__134___34____4______
1345__134___34____3______
1345__134___34____34_____
1345__134___34____4______
1345__134___34____4_____4
1345__134___34____3______
1345__134___34____3_____3
1345__134___34____34____4
1345__134___34____34____3
1345__134___14____4______
1345__134___14____1______
1345__134___14____14_____
1345__134___14____4______
1345__134___14____4_____4
1345__134___14____1______
1345__134___14____1_____1
1345__134___14____14____4
1345__134___14____14____1
1345__134___13____3______
1345__134___13____1______
1345__134___13____13_____
1345__134___13____3______
1345__134___13____3_____3
1345__134___13____1______
1345__134___13____1_____1
1345__134___13____13____3
1345__134___13____13____1
1345__134___134___34_____
1345__134___134___14_____
1345__134___134___13_____
1345__134___134___34____4
1345__134___134___34____3
1345__134___134___14____4
1345__134___134___14____1
1345__134___134___13____3
1345__134___134___13____1
1345__1345__345__________
1345__1345__145__________
1345__1345__135__________
1345__1345__134__________
1345__1345__345___45_____
1345__1345__345___35_____
1345__1345__345___34_____
1345__1345__345___45____5
1345__1345__345___45____4
1345__1345__345___35____5
1345__1345__345___35____3
1345__1345__345___34____4
1345__1345__345___34____3
1345__1345__145___45_____
1345__1345__145___15_____
1345__1345__145___14_____
1345__1345__145___45____5
1345__1345__145___45____4
1345__1345__145___15____5
1345__1345__145___15____1
1345__1345__145___14____4
1345__1345__145___14____1
1345__1345__135___35_____
1345__1345__135___15_____
1345__1345__135___13_____
1345__1345__135___35____5
1345__1345__135___35____3
1345__1345__135___15____5
1345__1345__135___15____1
1345__1345__135___13____3
1345__1345__135___13____1
1345__1345__134___34_____
1345__1345__134___14_____
1345__1345__134___13_____
1345__1345__134___34____4
1345__1345__134___34____3
1345__1345__134___14____4
1345__1345__134___14____1
1345__1345__134___13____3
1345__1345__134___13____1
1245__245________________
1245__145________________
1245__125________________
1245__124________________
1245__1245_______________
1245__245___45___________
1245__245___25___________
1245__245___24___________
1245__245___245__________
1245__245___45____5______
1245__245___45____4______
1245__245___45____45_____
1245__245___45____5______
1245__245___45____5_____5
1245__245___45____4______
1245__245___45____4_____4
1245__245___45____45____5
1245__245___45____45____4
1245__245___25____5______
1245__245___25____2______
1245__245___25____25_____
1245__245___25____5______
1245__245___25____5_____5
1245__245___25____2______
1245__245___25____2_____2
1245__245___25____25____5
1245__245___25____25____2
1245__245___24____4______
1245__245___24____2______
1245__245___24____24_____
1245__245___24____4______
1245__245___24____4_____4
1245__245___24____2______
1245__245___24____2_____2
1245__245___24____24____4
1245__245___24____24____2
1245__245___245___45_____
1245__245___245___25_____
1245__245___245___24_____
1245__245___245___45____5
1245__245___245___45____4
1245__245___245___25____5
1245__245___245___25____2
1245__245___245___24____4
1245__245___245___24____2
1245__145___45___________
1245__145___15___________
1245__145___14___________
1245__145___145__________
1245__145___45____5______
1245__145___45____4______
1245__145___45____45_____
1245__145___45____5______
1245__145___45____5_____5
1245__145___45____4______
...
1235__1235__235___25_____
1235__1235__235___23_____
1235__1235__235___35____5
1235__1235__235___35____3
1235__1235__235___25____5
1235__1235__235___25____2
1235__1235__235___23____3
1235__1235__235___23____2
1235__1235__135___35_____
1235__1235__135___15_____
1235__1235__135___13_____
1235__1235__135___35____5
1235__1235__135___35____3
1235__1235__135___15____5
1235__1235__135___15____1
1235__1235__135___13____3
1235__1235__135___13____1
1235__1235__125___25_____
1235__1235__125___15_____
1235__1235__125___12_____
1235__1235__125___25____5
1235__1235__125___25____2
1235__1235__125___15____5
1235__1235__125___15____1
1235__1235__125___12____2
1235__1235__125___12____1
1235__1235__123___23_____
1235__1235__123___13_____
1235__1235__123___12_____
1235__1235__123___23____3
1235__1235__123___23____2
1235__1235__123___13____3
1235__1235__123___13____1
1235__1235__123___12____2
1235__1235__123___12____1
1234__234________________
1234__134________________
1234__124________________
1234__123________________
1234__1234_______________
1234__234___34___________
1234__234___24___________
1234__234___23___________
1234__234___234__________
1234__234___34____4______
1234__234___34____3______
1234__234___34____34_____
1234__234___34____4______
1234__234___34____4_____4
1234__234___34____3______
1234__234___34____3_____3
1234__234___34____34____4
1234__234___34____34____3
1234__234___24____4______
1234__234___24____2______
1234__234___24____24_____
1234__234___24____4______
1234__234___24____4_____4
1234__234___24____2______
1234__234___24____2_____2
1234__234___24____24____4
1234__234___24____24____2
1234__234___23____3______
1234__234___23____2______
1234__234___23____23_____
1234__234___23____3______
1234__234___23____3_____3
1234__234___23____2______
1234__234___23____2_____2
1234__234___23____23____3
1234__234___23____23____2
1234__234___234___34_____
1234__234___234___24_____
1234__234___234___23_____
1234__234___234___34____4
1234__234___234___34____3
1234__234___234___24____4
1234__234___234___24____2
1234__234___234___23____3
1234__234___234___23____2
1234__134___34___________
1234__134___14___________
1234__134___13___________
1234__134___134__________
1234__134___34____4______
1234__134___34____3______
1234__134___34____34_____
1234__134___34____4______
1234__134___34____4_____4
1234__134___34____3______
1234__134___34____3_____3
1234__134___34____34____4
1234__134___34____34____3
1234__134___14____4______
1234__134___14____1______
1234__134___14____14_____
1234__134___14____4______
1234__134___14____4_____4
1234__134___14____1______
1234__134___14____1_____1
1234__134___14____14____4
1234__134___14____14____1
1234__134___13____3______
1234__134___13____1______
1234__134___13____13_____
1234__134___13____3______
1234__134___13____3_____3
1234__134___13____1______
1234__134___13____1_____1
1234__134___13____13____3
1234__134___13____13____1
1234__134___134___34_____
1234__134___134___14_____
1234__134___134___13_____
1234__134___134___34____4
1234__134___134___34____3
1234__134___134___14____4
1234__134___134___14____1
1234__134___134___13____3
1234__134___134___13____1
1234__124___24___________
1234__124___14___________
1234__124___12___________
1234__124___124__________
1234__124___24____4______
1234__124___24____2______
1234__124___24____24_____
1234__124___24____4______
1234__124___24____4_____4
1234__124___24____2______
1234__124___24____2_____2
1234__124___24____24____4
1234__124___24____24____2
1234__124___14____4______
1234__124___14____1______
1234__124___14____14_____
1234__124___14____4______
1234__124___14____4_____4
1234__124___14____1______
1234__124___14____1_____1
1234__124___14____14____4
1234__124___14____14____1
1234__124___12____2______
1234__124___12____1______
1234__124___12____12_____
1234__124___12____2______
1234__124___12____2_____2
1234__124___12____1______
1234__124___12____1_____1
1234__124___12____12____2
1234__124___12____12____1
1234__124___124___24_____
1234__124___124___14_____
1234__124___124___12_____
1234__124___124___24____4
1234__124___124___24____2
1234__124___124___14____4
1234__124___124___14____1
1234__124___124___12____2
1234__124___124___12____1
1234__123___23___________
1234__123___13___________
1234__123___12___________
1234__123___123__________
1234__123___23____3______
1234__123___23____2______
1234__123___23____23_____
1234__123___23____3______
1234__123___23____3_____3
1234__123___23____2______
1234__123___23____2_____2
1234__123___23____23____3
1234__123___23____23____2
1234__123___13____3______
1234__123___13____1______
1234__123___13____13_____
1234__123___13____3______
1234__123___13____3_____3
1234__123___13____1______
1234__123___13____1_____1
1234__123___13____13____3
1234__123___13____13____1
1234__123___12____2______
1234__123___12____1______
1234__123___12____12_____
1234__123___12____2______
1234__123___12____2_____2
1234__123___12____1______
1234__123___12____1_____1
1234__123___12____12____2
1234__123___12____12____1
1234__123___123___23_____
1234__123___123___13_____
1234__123___123___12_____
1234__123___123___23____3
1234__123___123___23____2
1234__123___123___13____3
1234__123___123___13____1
1234__123___123___12____2
1234__123___123___12____1
1234__1234__234__________
1234__1234__134__________
1234__1234__124__________
1234__1234__123__________
1234__1234__234___34_____
1234__1234__234___24_____
1234__1234__234___23_____
1234__1234__234___34____4
1234__1234__234___34____3
1234__1234__234___24____4
1234__1234__234___24____2
1234__1234__234___23____3
1234__1234__234___23____2
1234__1234__134___34_____
1234__1234__134___14_____
1234__1234__134___13_____
1234__1234__134___34____4
1234__1234__134___34____3
1234__1234__134___14____4
1234__1234__134___14____1
1234__1234__134___13____3
1234__1234__134___13____1
1234__1234__124___24_____
1234__1234__124___14_____
1234__1234__124___12_____
1234__1234__124___24____4
1234__1234__124___24____2
1234__1234__124___14____4
1234__1234__124___14____1
1234__1234__124___12____2
1234__1234__124___12____1
1234__1234__123___23_____
1234__1234__123___13_____
1234__1234__123___12_____
1234__1234__123___23____3
1234__1234__123___23____2
1234__1234__123___13____3
1234__1234__123___13____1
1234__1234__123___12____2
1234__1234__123___12____1
========= ERROR SUMMARY: 0 errors
$
The answer given by Robert Crovella is correct at the 5th point, the mistake was in the using of init in every recursive call, but I want to clarify something that can be useful for other beginners with CUDA.
I used this variable because when I tried to launch a child kernel passing a local variable I always got the exception: Error: a pointer to local memory cannot be passed to a launch as an argument.
As I´m C# expert developer I´m not used to using pointers (Ref does the low-level-work for that) so I thought there was no way to do it in CUDA/c programming.
As Robert shows in its code it is possible copying the pointer with memalloc for using it as a referable argument.
Here is a kernel simplified as an example of deep recursion.
__device__ char init[6] = { "12345" };
__global__ void Recursive(int depth, const char* route) {
// up to depth 6
if (depth == 5) return;
//declaration for a referable argument (point 6)
char* newroute = (char*)malloc(6);
memcpy(newroute, route, 5);
int o = 0;
int newlen = 0;
for (int i = 0; i < (6 - depth); ++i)
{
if (i != threadIdx.x)
{
newroute[i - o] = route[i];
newlen++;
}
else
{
o = 1;
}
}
printf("%s\n", newroute);
Recursive <<<1, newlen>>>(depth + 1, newroute);
}
__global__ void RecursiveCount() {
Recursive <<<1, 5>>>(0, init);
}
I don't add the main call because I´m using ManagedCUDA for C# but as Robert says it can be figured-out how the call RecursiveCount is.
About ending arrays of char with /0 ... sorry but I don't know exactly what is the benefit; this code works fine without them.

Are dynamic variables supported?

I was wondering if it is possible to dynamically create variables in Go?
I have provided a pseudo-code below to illustrate what I mean. I am storing the newly created variables in a slice:
func method() {
slice := make([]type)
for(i=0;i<10;i++)
{
var variable+i=i;
slice := append(slice, variablei)
}
}
At the end of the loop, the slice should contain the variables: variable1, variable2...variable9
Go has no dynamic variables.
Dynamic variables in most languages are implemented as Map (Hashtable).
So you can have one of following maps in your code that will do what you want
var m1 map[string]int
var m2 map[string]string
var m3 map[string]interface{}
here is Go code that does what you what
http://play.golang.org/p/d4aKTi1OB0
package main
import "fmt"
func method() []int {
var slice []int
for i := 0; i < 10; i++ {
m1 := map[string]int{}
key := fmt.Sprintf("variable%d", i)
m1[key] = i
slice = append(slice, m1[key])
}
return slice
}
func main() {
fmt.Println(method())
}
No; you cannot refer to local variables if you don’t know their names at compile-time.
If you need the extra indirection you can do it using pointers instead.
func function() {
slice := []*int{}
for i := 0; i < 10; i++ {
variable := i
slice = append(slice, &variable)
}
// slice now contains ten pointers to integers
}
Also note that the parentheses in the for loop ought to be omitted, and putting the opening brace on a new line is a syntax error due to automatic semicolon insertion after ++. makeing a slice requires you to pass a length, hence I don’t use it since append is used anyway.

Lex Yacc / Flex Bison variables

I was just wondering how any of you guys would implement multi character variables in c using Flex and Bison / Lex and Yacc ?
Any if so can you provide maybe a simple example?
I am attempting to write an interpreter for a language and I can't seem to find a good way to implement variables, so far the methods I've tried have either failed or causing the execution of any program with a lot of variables become really so (I mean it could take minutes to execute a program that just assigns 1000 variables and does nothing else)
Thanks for your time,
Francis
In a lexer provided by ADAIC for Ada the following method is used, i find it ver useful for lexing multu-character literals such as reserved words and variables. It (along with corresponding Bison grammar and some other stuff) is available at ADAIC docs
%%
[a-zA-Z](_?[a-zA-Z0-9])* return(lk_keyword(yytext));
%%
# define NUM_KEYWORDS 69
KEY_TABLE key_tab[NUM_KEYWORDS] =
{
{"ABORT", ABORT},
{"ABS", ABS},
....
....
....
};
lk_keyword(str)
char *str;
{
int min;
int max;
int guess, compare;
min = 0;
max = NUM_KEYWORDS-1;
guess = (min + max) / 2;
to_upper(str);
for (guess=(min+max)/2; min<=max; guess=(min+max)/2) {
if ((compare = strcmp(key_tab[guess].kw, str)) < 0) {
min = guess + 1;
} else if (compare > 0) {
max = guess - 1;
} else {
return key_tab[guess].kwv;
}
}
return identifier;
}

What is the "trick" to writing a Quine?

I read Ken Thompson's classic paper Reflections on Trusting Trust in which he prompts users to write a Quine as an introduction to his argument (highly recommended read).
A quine is a computer program which takes no input and produces a copy of its own source code as its only output.
The naive approach is simply to want to say:
print "[insert this program's source here]"
But one quickly sees that this is impossible. I ended up writing one myself using Python but still have trouble explaining "the trick". I'm looking for an excellent explanation of why Quines are possible.
The normal trick is to use printf such that the format-string represents the structure of the program, with a place-holder for the string itself to get the recursion you need:
The standard C example from http://www.nyx.net/~gthompso/quine.htm illustrates this quite well:
char*f="char*f=%c%s%c;main(){printf(f,34,f,34,10);}%c";main(){printf(f,34,f,34,10);}
edit: After writing this, I did a bit of searching: http://www.madore.org/~david/computers/quine.html gives a very good, more theoretical, description of what exactly quines are and why they work.
Here's one I wrote that uses putchar instead of printf; thus it has to process all its own escape codes. But it is %100 portable across all C execution character sets.
You should be able to see that there is a seam in the text representation that mirrors a seam in the program text itself, where it changes from working on the beginning to working on the end. The trick to writing a Quine is getting over this "hump", where you switch to digging your way out of the hole! Your options are constrained by the textual representation and the language's output facilities.
#include <stdio.h>
void with(char *s) {
for (; *s; s++) switch (*s) {
case '\n': putchar('\\'); putchar('n'); break;
case '\\': putchar('\\'); putchar('\\'); break;
case '\"': putchar('\\'); putchar('\"'); break;
default: putchar(*s);
}
}
void out(char *s) { for (; *s; s++) putchar(*s); }
int main() {
char *a[] = {
"#include <stdio.h>\n\n",
"void with(char *s) {\n",
" for (; *s; s++) switch (*s) {\n",
" case '\\",
"n': putchar('\\\\'); putchar('n'); break;\n",
" case '\\\\': putchar('\\\\'); putchar('\\\\'); break;\n",
" case '\\\"': putchar('\\\\'); putchar('\\\"'); break;\n",
" default: putchar(*s);\n",
" }\n}\n",
"void out(char *s) { for (; *s; s++) putchar(*s); }\n",
"int main() {\n",
" char *a[] = {\n",
NULL }, *b[] = {
"NULL }, **p;\n",
" for (p = a; *p; p++) out(*p);\n",
" for (p = a; *p; p++) {\n",
" putchar('\\\"');\n",
" with(*p);\n",
" putchar('\\\"'); putchar(','); putchar('\\",
"n');\n",
" }\n",
" out(\"NULL }, *b[] = {\\",
"n\");\n",
" for (p = b; *p; p++) {\n",
" putchar('\\\"');\n",
" with(*p);\n",
" putchar('\\\"'); putchar(','); putchar('\\",
"n');\n",
" }\n",
" for (p = b; *p; p++) out(*p);\n",
" return 0;\n",
"}\n",
NULL }, **p;
for (p = a; *p; p++) out(*p);
for (p = a; *p; p++) {
putchar('\"');
with(*p);
putchar('\"'); putchar(','); putchar('\n');
}
out("NULL }, *b[] = {\n");
for (p = b; *p; p++) {
putchar('\"');
with(*p);
putchar('\"'); putchar(','); putchar('\n');
}
for (p = b; *p; p++) out(*p);
return 0;
}
A common trick is to jump start the quine by writing a program to read a textfile and output an array of numbers. Then you modify it to use a static array, and run the first program against the new (static array) program, producing an array of number that represents the program. Insert that into the static array, run it again until it settles down, and that gets you a quine. But, it's tied to a specific character set (== not 100% portable). A program like the above (and not the classic printf hack) will work the same on ASCII or EBCDIC (the classic printf hack fails in EBCDIC because it contains hard-coded ASCII).
edit:
Reading the question again, carefully (finally), it appears you're actually looking for more philosophy less technique. The trick that lets you out of the infinite regress is the two-fer. You've got to get both the encoded program and the expanded program out of the same data: using the same data 2 ways. This data thus only describes the part of the program surrounding its future manifestation, the frame. The image within this frame is a straight copy of the original.
This is how you would naturally go about producing a recursive drawing by hand: the tv of a tv of tv. At some point you get tired and just sketch some glare over the screen, because the recursion has been sufficiently established.
edit:
I'm looking for an excellent explanation of why Quines are possible.
The "possibility" of a Quine goes into the depths of the mathematical revolutions of the 19th and 20th centuries. The "classic" quine by W. V. O. Quine, is the sequence of words (IIRC)
yields false when appended to itself
which is a paradox, akin to David's request for something that "makes me happy when sad, and makes me sad when happy" answered by the medallion inscribed on both sides: "this too shall pass".
The same sort of knot was investigated by the Pioneers of modern mathematical logic such as Frege, Russell and Whitehead, Łukasiewicz, and of course, our boys Turing, Church and Thue. The trick that makes it possible to transpose the Quine from the realm of wordplay to a programmatic demonstration (untwisting the paradox part along the way), was Gödel's method of encoding the arithmetic operations themselves as numbers, so an entire mathematical expression can be encoded into a single (enormous) integer. In particular, a mathematical function that performs a decoding of this representation can be expressed in the same (numerical) form. This number (a Gödel-encoded function) is both code and data.
This power-trio (Code, Representation, Data), can be transposed to different repesentations. By choosing a different Representation (or a chain like: bytes-> ASCII-> hexadecimal-> integer), alters the behavior of the Code, which alters the appearance of the Data.

Trying to parse OpenCV YAML ouput with yaml-cpp

I've got a series of OpenCv generated YAML files and would like to parse them with yaml-cpp
I'm doing okay on simple stuff, but the matrix representation is proving difficult.
# Center of table
tableCenter: !!opencv-matrix
rows: 1
cols: 2
dt: f
data: [ 240, 240]
This should map into the vector
240
240
with type float. My code looks like:
#include "yaml.h"
#include <fstream>
#include <string>
struct Matrix {
int x;
};
void operator >> (const YAML::Node& node, Matrix& matrix) {
unsigned rows;
node["rows"] >> rows;
}
int main()
{
std::ifstream fin("monsters.yaml");
YAML::Parser parser(fin);
YAML::Node doc;
Matrix m;
doc["tableCenter"] >> m;
return 0;
}
But I get
terminate called after throwing an instance of 'YAML::BadDereference'
what(): yaml-cpp: error at line 0, column 0: bad dereference
Abort trap
I searched around for some documentation for yaml-cpp, but there doesn't seem to be any, aside from a short introductory example on parsing and emitting. Unfortunately, neither of these two help in this particular circumstance.
As I understand, the !! indicate that this is a user-defined type, but I don't see with yaml-cpp how to parse that.
You have to tell yaml-cpp how to parse this type. Since C++ isn't dynamically typed, it can't detect what data type you want and create it from scratch - you have to tell it directly. Tagging a node is really only for yourself, not for the parser (it'll just faithfully store it for you).
I'm not really sure how an OpenCV matrix is stored, but if it's something like this:
class Matrix {
public:
Matrix(unsigned r, unsigned c, const std::vector<float>& d): rows(r), cols(c), data(d) { /* init */ }
Matrix(const Matrix&) { /* copy */ }
~Matrix() { /* delete */ }
Matrix& operator = (const Matrix&) { /* assign */ }
private:
unsigned rows, cols;
std::vector<float> data;
};
then you can write something like
void operator >> (const YAML::Node& node, Matrix& matrix) {
unsigned rows, cols;
std::vector<float> data;
node["rows"] >> rows;
node["cols"] >> cols;
node["data"] >> data;
matrix = Matrix(rows, cols, data);
}
Edit It appears that you're ok up until here; but you're missing the step where the parser loads the information into the YAML::Node. Instead, se it like:
std::ifstream fin("monsters.yaml");
YAML::Parser parser(fin);
YAML::Node doc;
parser.GetNextDocument(doc); // <-- this line was missing!
Matrix m;
doc["tableCenter"] >> m;
Note: I'm guessing dt: f means "data type is float". If that's the case, it'll really depend on how the Matrix class handles this. If you have a different class for each data type (or a templated class), you'll have to read that field first, and then choose which type to instantiate. (If you know it'll always be float, that'll make your life easier, of course.)