AI: Conditional Independence - conditional-statements

Conditional Independence Example Photo
The entire pdf lesson
it's on page 8.
I've been looking at this for a long time now; can anyone explain how for the P13 we end up with <0.31,0.69>? I'm not sure how the a' gets distributed here. When I calculate 0.2(0.04+0.16+0.16) for the x column I get 0.072, so how do we end up with 0.31?
Thank you.

The α is a normalization constant that is supposed to ensure that you have proper probabilities, i.e. values in [0, 1] that sum to 1. As such, it has to be 1 over the sum of all possible values. For your example, we calculate it as follows.
Let's first evaluate the single expressions in the tuple:
0.2 * (0.04 + 0.16 + 0.16) = 0.072
0.8 * (0.04 + 0.16) = 0.16
Notice that these two values do not specify a probability distribution (they don't sum to 1).
Therefore, we calculate the normalization constant α as 1 over the sum of these values:
α = 1 / (0.072 + 0.16) = 4.310345
With this, we normalize the original values as follows:
0.072 * α = 0.310345
0.16 * α = 0.689655
Notice how these values do indeed specify a probability distribution now. (They are in [0, 1] and sum to 1).
I hope this helps :)

Related

Pandas keep decimal part of values like .998344 after round(2) applied to series

I have dataset with float values with 6 decimals. I need to round it to two decimals.The problem becams with some floats nearly close to 1. After applying round(2) I got 1.00 instead of 0.99. May be this is mathematically right, but I need to have values like 0.99. My customer needs two decimals as result, I cant change it.
ones_list = [0.998344, 0.996176, 0.998344, 0.998082]
df = pd.DataFrame(ones_list, columns=['value_to_round'])
df['value_to_round'].round(2)
1.0
1.0
1.0
1.0
I see a few options:
use floor instead of round (but would you have the same issue with 0.005?)
use clip to set a maximum (and a min?) value in the column of 0.99:
df['value_to_round'].round(2).clip(upper=0.99)
Please refer to the basic of rounding in math, you are trying to round 2 digits behind the dot using .round(2)
if you round 0.999 using .round(2), of course you'll get 1.0 because the last '9' digit (0.009) will become 0.01 thus will be added to 0.09 and become 0.1 added again with 0.9 and finally becomes 1.0
If you really want to have values like 0.99, just take the two decimals behind the dot. You can try either the following methods:
import math
df['value_to_round'] = df['value_to_round'] * 100
df['value_to_round'] = df['value_to_round'].apply(math.trunc)
df['value_to_round'] = df['value_to_round'] / 100
or
df['value_to_round'] = df['value_to_round'].astype(str)
df['value_to_round'] = df['value_to_round'].str[:4]
df['value_to_round'] = df['value_to_round'].astype(float)
I experienced the same thing when I was trying to show R squared value, what I did is just use .round(3), because 3 digits decimal wouldn't hurt
I hope this helps :)
df['value_to_round'] = [x if x < 1 else 0.99 for x in df['value_to_round'].round(2)]

What is definition of truncated polynomial?

In NTRUEncryption, I seen the trucated polynimials, but I cannot understand the trunacated polynomial calculation.
So, could tell me anyone How we calculate the truncated polynomial?
The polynomials are truncated in the sense that they only have coefficients up to a certain degree.
Here is how you truncate the product of two truncated polynomials (the sum is trivial):
Assume you have two truncated polynomials, i.e. two polynomials of degree no greater than n-1
a = a[0] + a[1]X + ... + a[n-1]X^(n-1)
b = b[0] + b[1]X + ... + b[n-1]X^(n-1)
Then their "truncated" product is defined as the polynomial
a * b = c[0] + c[1]X + ... +c[n-1]X^(n-1)
where the c[k] coefficients are computed as follow:
Reverse b[0]..b[n-1] to get b[n-1]..b[0].
Rotate the result of step 1 above k+1 times to the right and get b[k]..b[0]b[n-1]..b[k+1]
Denote with b_k[0]..b_k[n-1] the array calculated in 2.
Now define
c[k] = a[0]b_k[0] + a[1]b_k[1] + ... + a[n-1]b_k[n-1].
This operation can also be made by multiplying the polynomials a and b in the usual way and then truncating the result to the degree n-1. The reason for the algorithm above is to avoid computing coefficients that will not be used in the final result.

How to calculate the interior angles total from giving 4 points in order?

I am using objective-c, and I would like to calculate the interior angles total, with giving 4 points in order. Is objective-c have these kind of maths library to do so ? Thanks.
It is 180*(n-2), where n is the number of sides (=number of vertices) of the polygon.
Reference is here.
Objective-C uses the standard C maths library maths.h. This has the trig and sqrt functions you would be likely to need.
I have just recently solved this problem in Java. There must be a good library for this. However if you are looking to calculate the angle between three points then you simply need to use the dot product of the two vectors which would be produced thus for
x_1, y_1, x_2, y_2, x_3, y_3
define
a_x = x_2 - x_1
a_y = y_2 - y_1
b_x = x_3 - x_2
b_y = y_3 - y_2
Then
dot_product = a_x * b_x + a_y * b_y
This allows you to calculate the value of cos_theta via the relation
cos_theta = dot_product / sqrt((a_x * a_x + a_y * a_y) * (b_x * b_x + b_y * b_y))
When you calculate the inverse cos of cos_theta you will get the smallest of the two possible solutions. I.e the values which are lass than or equal to 180 degress or PI radians.
I am not sure what you mean by the sum of the interior angles but if you sum the values derived from the above algorithm I think you will get what you want.
If you need to get the "angles on the left" or "the angles on the right" you will need to add a cross product to this algorithm.

Is it possible to optimize this Matlab code for doing vector quantization with centroids from k-means?

I've created a codebook using k-means of size 4000x300 (4000 centroids, each with 300 features). Using the codebook, I then want to label an input vector (for purposes of binning later on). The input vector is of size Nx300, where N is the total number of input instances I receive.
To compute the labels, I calculate the closest centroid for each of the input vectors. To do so, I compare each input vector against all centroids and pick the centroid with the minimum distance. The label is then just the index of that centroid.
My current Matlab code looks like:
function labels = assign_labels(centroids, X)
labels = zeros(size(X, 1), 1);
% for each X, calculate the distance from each centroid
for i = 1:size(X, 1)
% distance of X_i from all j centroids is: sum((X_i - centroid_j)^2)
% note: we leave off the sqrt as an optimization
distances = sum(bsxfun(#minus, centroids, X(i, :)) .^ 2, 2);
[value, label] = min(distances);
labels(i) = label;
end
However, this code is still fairly slow (for my purposes), and I was hoping there might be a way to optimize the code further.
One obvious issue is that there is a for-loop, which is the bane of good performance on Matlab. I've been trying to come up with a way to get rid of it, but with no luck (I looked into using arrayfun in conjunction with bsxfun, but haven't gotten that to work). Alternatively, if someone know of any other way to speed this up, I would be greatly appreciate it.
Update
After doing some searching, I couldn't find a great solution using Matlab, so I decided to look at what is used in Python's scikits.learn package for 'euclidean_distance' (shortened):
XX = sum(X * X, axis=1)[:, newaxis]
YY = Y.copy()
YY **= 2
YY = sum(YY, axis=1)[newaxis, :]
distances = XX + YY
distances -= 2 * dot(X, Y.T)
distances = maximum(distances, 0)
which uses the binomial form of the euclidean distance ((x-y)^2 -> x^2 + y^2 - 2xy), which from what I've read usually runs faster. My completely untested Matlab translation is:
XX = sum(data .* data, 2);
YY = sum(center .^ 2, 2);
[val, ~] = max(XX + YY - 2*data*center');
Use the following function to calculate your distances. You should see an order of magnitude speed up
The two matrices A and B have the columns as the dimenions and the rows as each point.
A is your matrix of centroids. B is your matrix of datapoints.
function D=getSim(A,B)
Qa=repmat(dot(A,A,2),1,size(B,1));
Qb=repmat(dot(B,B,2),1,size(A,1));
D=Qa+Qb'-2*A*B';
You can vectorize it by converting to cells and using cellfun:
[nRows,nCols]=size(X);
XCell=num2cell(X,2);
dist=reshape(cell2mat(cellfun(#(x)(sum(bsxfun(#minus,centroids,x).^2,2)),XCell,'UniformOutput',false)),nRows,nRows);
[~,labels]=min(dist);
Explanation:
We assign each row of X to its own cell in the second line
This piece #(x)(sum(bsxfun(#minus,centroids,x).^2,2)) is an anonymous function which is the same as your distances=... line, and using cell2mat, we apply it to each row of X.
The labels are then the indices of the minimum row along each column.
For a true matrix implementation, you may consider trying something along the lines of:
P2 = kron(centroids, ones(size(X,1),1));
Q2 = kron(ones(size(centroids,1),1), X);
distances = reshape(sum((Q2-P2).^2,2), size(X,1), size(centroids,1));
Note
This assumes the data is organized as [x1 y1 ...; x2 y2 ...;...]
You can use a more efficient algorithm for nearest neighbor search than brute force.
The most popular approach are Kd-Tree. O(log(n)) average query time instead of the O(n) brute force complexity.
Regarding a Maltab implementation of Kd-Trees, you can have a look here

Is there an iterative way to calculate radii along a scanline?

I am processing a series of points which all have the same Y value, but different X values. I go through the points by incrementing X by one. For example, I might have Y = 50 and X is the integers from -30 to 30. Part of my algorithm involves finding the distance to the origin from each point and then doing further processing.
After profiling, I've found that the sqrt call in the distance calculation is taking a significant amount of my time. Is there an iterative way to calculate the distance?
In other words:
I want to efficiently calculate: r[n] = sqrt(x[n]*x[n] + y*y)). I can save information from the previous iteration. Each iteration changes by incrementing x, so x[n] = x[n-1] + 1. I can not use sqrt or trig functions because they are too slow except at the beginning of each scanline.
I can use approximations as long as they are good enough (less than 0.l% error) and the errors introduced are smooth (I can't bin to a pre-calculated table of approximations).
Additional information:
x and y are always integers between -150 and 150
I'm going to try a couple ideas out tomorrow and mark the best answer based on which is fastest.
Results
I did some timings
Distance formula: 16 ms / iteration
Pete's interperlating solution: 8 ms / iteration
wrang-wrang pre-calculation solution: 8ms / iteration
I was hoping the test would decide between the two, because I like both answers. I'm going to go with Pete's because it uses less memory.
Just to get a feel for it, for your range y = 50, x = 0 gives r = 50 and y = 50, x = +/- 30 gives r ~= 58.3. You want an approximation good for +/- 0.1%, or +/- 0.05 absolute. That's a lot lower accuracy than most library sqrts do.
Two approximate approaches - you calculate r based on interpolating from the previous value, or use a few terms of a suitable series.
Interpolating from previous r
r = ( x2 + y2 ) 1/2
dr/dx = 1/2 . 2x . ( x2 + y2 ) -1/2 = x/r
double r = 50;
for ( int x = 0; x <= 30; ++x ) {
double r_true = Math.sqrt ( 50*50 + x*x );
System.out.printf ( "x: %d r_true: %f r_approx: %f error: %f%%\n", x, r, r_true, 100 * Math.abs ( r_true - r ) / r );
r = r + ( x + 0.5 ) / r;
}
Gives:
x: 0 r_true: 50.000000 r_approx: 50.000000 error: 0.000000%
x: 1 r_true: 50.010000 r_approx: 50.009999 error: 0.000002%
....
x: 29 r_true: 57.825065 r_approx: 57.801384 error: 0.040953%
x: 30 r_true: 58.335225 r_approx: 58.309519 error: 0.044065%
which seems to meet the requirement of 0.1% error, so I didn't bother coding the next one, as it would require quite a bit more calculation steps.
Truncated Series
The taylor series for sqrt ( 1 + x ) for x near zero is
sqrt ( 1 + x ) = 1 + 1/2 x - 1/8 x2 ... + ( - 1 / 2 )n+1 xn
Using r = y sqrt ( 1 + (x/y)2 ) then you're looking for a term t = ( - 1 / 2 )n+1 0.36n with magnitude less that a 0.001, log ( 0.002 ) > n log ( 0.18 ) or n > 3.6, so taking terms to x^4 should be Ok.
Y=10000
Y2=Y*Y
for x=0..Y2 do
D[x]=sqrt(Y2+x*x)
norm(x,y)=
if (y==0) x
else if (x>y) norm(y,x)
else {
s=Y/y
D[round(x*s)]/s
}
If your coordinates are smooth, then the idea can be extended with linear interpolation. For more precision, increase Y.
The idea is that s*(x,y) is on the line y=Y, which you've precomputed distances for. Get the distance, then divide it by s.
I assume you really do need the distance and not its square.
You may also be able to find a general sqrt implementation that sacrifices some accuracy for speed, but I have a hard time imagining that beating what the FPU can do.
By linear interpolation, I mean to change D[round(x)] to:
f=floor(x)
a=x-f
D[f]*(1-a)+D[f+1]*a
This doesn't really answer your question, but may help...
The first questions I would ask would be:
"do I need the sqrt at all?".
"If not, how can I reduce the number of sqrts?"
then yours: "Can I replace the remaining sqrts with a clever calculation?"
So I'd start with:
Do you need the exact radius, or would radius-squared be acceptable? There are fast approximatiosn to sqrt, but probably not accurate enough for your spec.
Can you process the image using mirrored quadrants or eighths? By processing all pixels at the same radius value in a batch, you can reduce the number of calculations by 8x.
Can you precalculate the radius values? You only need a table that is a quarter (or possibly an eighth) of the size of the image you are processing, and the table would only need to be precalculated once and then re-used for many runs of the algorithm.
So clever maths may not be the fastest solution.
Well there's always trying optimize your sqrt, the fastest one I've seen is the old carmack quake 3 sqrt:
http://betterexplained.com/articles/understanding-quakes-fast-inverse-square-root/
That said, since sqrt is non-linear, you're not going to be able to do simple linear interpolation along your line to get your result. The best idea is to use a table lookup since that will give you blazing fast access to the data. And, since you appear to be iterating by whole integers, a table lookup should be exceedingly accurate.
Well, you can mirror around x=0 to start with (you need only compute n>=0, and the dupe those results to corresponding n<0). After that, I'd take a look at using the derivative on sqrt(a^2+b^2) (or the corresponding sin) to take advantage of the constant dx.
If that's not accurate enough, may I point out that this is a pretty good job for SIMD, which will provide you with a reciprocal square root op on both SSE and VMX (and shader model 2).
This is sort of related to a HAKMEM item:
ITEM 149 (Minsky): CIRCLE ALGORITHM
Here is an elegant way to draw almost
circles on a point-plotting display:
NEW X = OLD X - epsilon * OLD Y
NEW Y = OLD Y + epsilon * NEW(!) X
This makes a very round ellipse
centered at the origin with its size
determined by the initial point.
epsilon determines the angular
velocity of the circulating point, and
slightly affects the eccentricity. If
epsilon is a power of 2, then we don't
even need multiplication, let alone
square roots, sines, and cosines! The
"circle" will be perfectly stable
because the points soon become
periodic.
The circle algorithm was invented by
mistake when I tried to save one
register in a display hack! Ben Gurley
had an amazing display hack using only
about six or seven instructions, and
it was a great wonder. But it was
basically line-oriented. It occurred
to me that it would be exciting to
have curves, and I was trying to get a
curve display hack with minimal
instructions.