Cost Based Optimizer and impossible queries - sql

The queries in the SQL below are valid queries but because of constraints on the table there can never be data in the table to match the where clause.
I ran explain on both queries in Postgres and it looks like the CBO isn't aware of this fact and intends to execute those queries. I would have assumed that it would recognize that there can't be any data and not even try.
create table myTest ( a char(1) not null, b integer);
insert into myTest values ('A',1), ('B',2), ('C',3);
select * from myTest where A = ‘Texas’;
select * from myTest where A is null;
I have searched for information and I found a lot of deep information on how the CBO works but nothing about this. I was expecting to see a CBO parameter that said something like "skip impossible queries".
I know different CBOs will work differently but, in general, do optimizers really not take this information into account? If not, why not?

That seems really unlikely. Cost-based optimizers do pretty much what their name implies -- they use statistics on the table (or estimated statistics) to choose the best algorithms for running the query.
They make very limited use of constraints -- probably none, actually. They may take unique constraints into account, but that is probably through the index rather than the constraint.
Why don't they do this? I suppose the people writing database optimizers are trying to solve the "harder" problems. If a single character is compared to 'Texas' that is really something the query writer should know about.
Further, query plans can be cached. Constraints can be removed. In general, I don't think that adding or removing constraints invalidates cached query plans.

Related

is "where (ParamID = #ParamID) OR (#ParamID = -1)" a good practice in sql selection

i used to write sql statments like
select * from teacher where (TeacherID = #TeacherID) OR (#TeacherID = -1)
read more
and pass #TeacherID value = -1 to select all teachers
now i'm worry about the performance
can you tell me is that a good practice or bad one?
many thanks
If TeacherID is indexed and you are passing a value other than -1 as TeacherID to search for details of a specific teacher then this query will end up doing a full table scan rather than the potentially far more efficient option of seeking into the index to retrieve the details of the specific teacher...
... Unless you are on SQL 2008 SP1 CU5 and later and use the OPTION (RECOMPILE) hint. See Dynamic Search Conditions in T-SQL for the definitive article on the topic.
We use this in a very limited fashion in stored procedures.
The problem is that the database engine isn't able to keep a good query plan for it. When dealing with a lot of data this can have a serious negative performance impact.
However, for smaller data sets (I'd say less than 1000 records, but that's a guess) it should be fine. You'll have to test in your particular environment.
If it's in a stored procedure, you might want to include something like a WITH RECOMPILE option so that the plan is regenerated on each execution. This adds (slightly) to the time for each run, but over several runs can actually reduce the average execution time. Also, this allows the database to inspect the actual query and "short circuit" the parts that aren't necessary on each call.
If you are directly creating your SQL and passing it through, then I'd suggest you make the part that builds your sql a little smarter so that it only includes the part of the where clause you actually need.
Another path you might consider is using UNION ALL queries as opposed to optional parameters. For example:
SELECT * FROM Teacher WHERE (TeacherId = #TeacherID)
UNION ALL
SELECT * FROM Teacher WHERE (#TeacherId = -1)
This actually accomplishes the exact same thing; however, the query plan is cacheable. We've used this method in a few places as well and saw performance improvements over using WITH RECOMPILE. We don't do this everywhere because some of our queries are extremely complicated and I'd rather have a performance hit than to complicate them further.
Ultimately though, you need to do a lot of testing.
There is a second part here that you should reconsider. SELECT *. It is ALWAYS preferable to actually name the columns you want returned and to make sure that you are only returning the ones you will actually need. Moving data across network boundaries is very expensive and you can generally get a fair amount of performance boost simply by specifying exactly what you want. In addition if what you need is very limited you can sometimes do covering indexes so that the database engine doesn't even have to touch the underlying tables to get the data you want.
If you're really worried about performance, you could break up your procedure to call on two different procs: one for all records, and one based on the parameter.
If #TeacherID = -1
exec proc_Get_All_Teachers
else
exec proc_Get_Teacher_By_TeacherID #TeacherID
Each one can be optimized individually.
It's your system, compare the performance. Consider optimizing on the most popular choice. If most users are going to select a single record, why hider their preformance just to accomodate the few that selct all teachers (And should have a reasonable expectation of performance.).
I know a single select query is easier to maintain, but at some point ease of maintenance eventually gives way to performance.

Cost of logic in a query

I have a query that looks something like this:
select xmlelement("rootNode",
(case
when XH.ID is not null then
xmlelement("xhID", XH.ID)
else
xmlelement("xhID", xmlattributes('true' AS "xsi:nil"), XH.ID)
end),
(case
when XH.SER_NUM is not null then
xmlelement("serialNumber", XH.SER_NUM)
else
xmlelement("serialNumber", xmlattributes('true' AS "xsi:nil"), XH.SER_NUM)
end),
/*repeat this pattern for many more columns from the same table...*/
FROM XH
WHERE XH.ID = 'SOMETHINGOROTHER'
It's ugly and I don't like it, and it is also the slowest executing query (there are others of similar form, but much smaller and they aren't causing any major problems - yet). Maintenance is relatively easy as this is mostly a generated query, but my concern now is for performance. I am wondering how much of an overhead there is for all of these case expressions.
To see if there was any difference, I wrote another version of this query as:
select xmlelement("rootNode",
xmlforest(XH.ID, XH.SER_NUM,...
(I know that this query does not produce exactly the same, thing, my plan was to move the logic for handling the renaming and xsi:nil attribute to XSL or maybe to PL/SQL)
I tried to get execution plans for both versions, but they are the same. I'm guessing that the logic does not get factored into the execution plan. My gut tells me the second version should execute faster, but I'd like some way to prove that (other than writing a PL/SQL test function with timing statements before and after the query and running that code over and over again to get a test sample).
Is it possible to get a good idea of how much the case-when will cost?
Also, I could write the case-when using the decode function instead. Would that perform better (than case-statements)?
Just about anything in your SELECT list, unless it is a user-defined function which reads a table or view, or a nested subselect, can usually be neglected for the purpose of analyzing your query's performance.
Open your connection properties and set the value SET STATISTICS IO on. Check out how many reads are happening. View the query plan. Are your indexes being used properly? Do you know how to analyze the plan to see?
For the purposes of performance tuning you are dealing with this statement:
SELECT *
FROM XH
WHERE XH.ID = 'SOMETHINGOROTHER'
How does that query perform? If it returns in markedly less time than the XML version then you need to consider the performance of the functions, but I would astonished if that were the case (oh ho!).
Does this return one row or several? If one row then you have only two things to work with:
is XH.ID indexed and, if so, is the index being used?
does the "many more columns from the same table" indicate a problem with chained rows?
If the query returns several rows then ... Well, actually you have the same two things to work with. It's just the emphasis is different with regards to indexes. If the index has a very poor clustering factor then it could be faster to avoid using the index in favour of a full table scan.
Beyond that you would need to look at physical problems - I/O bottlenecks, poor interconnects, a dodgy disk. The reason why your scope for tuning the query is so restricted is because - as presented - it is a single table, single column read. Most tuning is about efficient joining. Now if XH transpires to be a view over a complex query then it is a different matter.
You can use good old tkprof to analyze statistics. One of the many forms of ALTER SESSION that turn on stats gathering. The DBMS_PROFILER package also gathers statistics if your cursor is in a PL/SQL code block.

How to tell if a query will scale well?

What are some of the methods/techniques experienced SQL developers use to determine if a particular SQL query will scale well as load increases, rows in associated tables increase etc.
Some rules that I follow that make the most difference.
Don't use per-row functions in your queries like if, case, coalesce and so on. Work around them by putting data in the database in the format you're going to need it, even if that involves duplicate data.
For example, if you need to lookup surnames fast, store them in the entered form and in their lowercase form, and index the lowercase form. Then you don't have to worry about things like select * from tbl where lowercase(surname) = 'smith';
Yes, I know that breaks 3NF but you can still guarantee data integrity by judicious use of triggers or pre-computed columns. For example, an insert/update trigger on the table can force the lower_surname column to be set to the lowercase version of surname.
This moves the cost of conversion to the insert/update (which happens infrequently) and away from the select (which happens quite a lot more). You basically amortise the cost of conversion.
Make sure that every column used in a where clause is indexed. Not necessarily on its own but at least as the primary part of a composite key.
Always start off in 3NF and only revert if you have performance problems (in production). 3NF is often the easiest to handle and reverting should only be done when absolutely necessary.
Profile, in production (or elsewhere, as long as you have production data and schemas). Database tuning is not a set-and-forget operation unless the data in your tables never changes (very rare). You should be monitoring, and possibly tuning, periodically to avoid the possibility that changing data will bring down performance.
Don't, unless absolutely necessary, allow naked queries to your database. Try to control what queries can be run. Your job as a DBA will be much harder if some manager can come along and just run:
select * from very_big_table order by column_without_index;
on your database.
If managers want to be able to run ad-hoc queries, give them a cloned DBMS (or replica) so that your real users (the ones that need performance) aren't affected.
Don't use union when union all will suffice. If you know that there can be no duplicates between two selects of a union, there's no point letting the DBMS try to remove them.
Similarly, don't use select distinct on a table if you're retrieving all the primary key columns (or all columns in a unique constraint). There is no possibility of duplicates in those cases so, again, you're asking the DBMS to do unnecessary work.
Example: we had a customer with a view using select distinct * on one of their tables. Querying the view took 50 seconds. When we replaced it with a view starting select *, the time came down to sub-second. Needless to say, I got a good bottle of red wine out of that :-)
Try to avoid select * as much as possible. In other words, only get the columns you need. This makes little difference when you're using MySQL on your local PC but, when you have an app in California querying a database in Inner Mongolia, you want to minimise the amount of traffic being sent across the wire as much as possible.
don't make tables wide, keep them narrow as well as the indexes. Make sure that queries are fully covered by indexes and that those queries are SARGable.
Test with a ton of data before going in production, take a look at this: Your testbed has to have the same volume of data as on production in order to simulate normal usage
Pull up the execution plan and look for any of the following:
Table Scan
[Clustered] Index Scan
RID Lookup
Bookmark Lookup
Key Lookup
Nested Loops
Any of those things (in descending order from most to least scalable) mean that the database/query likely won't scale to much larger tables. An ideal query will have mostly index seeks, hash or merge joins, the occasional sort, and other low-impact operations (spools and so on).
The only way to prove that it will scale, as other answers have pointed out, is to test it on data of the desired size. The above is just a rule of thumb.
In addition (and along the same lines) to Robert's suggestion, consider the execution plan. Is it utilizing indexes? Are there any scans or such? Can you simply for the query in any way? For example, Eliminate IN in favor of EXISTS and only join to tables you need to join to.
You don't mention the technology -- keep in mind that different technologies can affect the efficiency of more complex queries.
I strongly recommend reading some reference material on this. This (hyperlink below) is probably a pretty good book to look into. Make sure to look under "Selectivity", among other topics.
SQL Tuning - Dan Tow

Do indexes work with "IN" clause

If I have a query like:
Select EmployeeId
From Employee
Where EmployeeTypeId IN (1,2,3)
and I have an index on the EmployeeTypeId field, does SQL server still use that index?
Yeah, that's right. If your Employee table has 10,000 records, and only 5 records have EmployeeTypeId in (1,2,3), then it will most likely use the index to fetch the records. However, if it finds that 9,000 records have the EmployeeTypeId in (1,2,3), then it would most likely just do a table scan to get the corresponding EmployeeIds, as it's faster just to run through the whole table than to go to each branch of the index tree and look at the records individually.
SQL Server does a lot of stuff to try and optimize how the queries run. However, sometimes it doesn't get the right answer. If you know that SQL Server isn't using the index, by looking at the execution plan in query analyzer, you can tell the query engine to use a specific index with the following change to your query.
SELECT EmployeeId FROM Employee WITH (Index(Index_EmployeeTypeId )) WHERE EmployeeTypeId IN (1,2,3)
Assuming the index you have on the EmployeeTypeId field is named Index_EmployeeTypeId.
Usually it would, unless the IN clause covers too much of the table, and then it will do a table scan. Best way to find out in your specific case would be to run it in the query analyzer, and check out the execution plan.
Unless technology has improved in ways I can't imagine of late, the "IN" query shown will produce a result that's effectively the OR-ing of three result sets, one for each of the values in the "IN" list. The IN clause becomes an equality condition for each of the list and will use an index if appropriate. In the case of unique IDs and a large enough table then I'd expect the optimiser to use an index.
If the items in the list were to be non-unique however, and I guess in the example that a "TypeId" is a foreign key, then I'm more interested in the distribution. I'm wondering if the optimiser will check the stats for each value in the list? Say it checks the first value and finds it's in 20% of the rows (of a large enough table to matter). It'll probably table scan. But will the same query plan be used for the other two, even if they're unique?
It's probably moot - something like an Employee table is likely to be small enough that it will stay cached in memory and you probably wouldn't notice a difference between that and indexed retrieval anyway.
And lastly, while I'm preaching, beware the query in the IN clause: it's often a quick way to get something working and (for me at least) can be a good way to express the requirement, but it's almost always better restated as a join. Your optimiser may be smart enough to spot this, but then again it may not. If you don't currently performance-check against production data volumes, do so - in these days of cost-based optimisation you can't be certain of the query plan until you have a full load and representative statistics. If you can't, then be prepared for surprises in production...
So there's the potential for an "IN" clause to run a table scan, but the optimizer will
try and work out the best way to deal with it?
Whether an index is used doesn't so much vary on the type of query as much of the type and distribution of data in the table(s), how up-to-date your table statistics are, and the actual datatype of the column.
The other posters are correct that an index will be used over a table scan if:
The query won't access more than a certain percent of the rows indexed (say ~10% but should vary between DBMS's).
Alternatively, if there are a lot of rows, but relatively few unique values in the column, it also may be faster to do a table scan.
The other variable that might not be that obvious is making sure that the datatypes of the values being compared are the same. In PostgreSQL, I don't think that indexes will be used if you're filtering on a float but your column is made up of ints. There are also some operators that don't support index use (again, in PostgreSQL, the ILIKE operator is like this).
As noted though, always check the query analyser when in doubt and your DBMS's documentation is your friend.
#Mike: Thanks for the detailed analysis. There are definately some interesting points you make there. The example I posted is somewhat trivial but the basis of the question came from using NHibernate.
With NHibernate, you can write a clause like this:
int[] employeeIds = new int[]{1, 5, 23463, 32523};
NHibernateSession.CreateCriteria(typeof(Employee))
.Add(Restrictions.InG("EmployeeId",employeeIds))
NHibernate then generates a query which looks like
select * from employee where employeeid in (1, 5, 23463, 32523)
So as you and others have pointed out, it looks like there are going to be times where an index will be used or a table scan will happen, but you can't really determine that until runtime.
Select EmployeeId From Employee USE(INDEX(EmployeeTypeId))
This query will search using the index you have created. It works for me. Please do a try..

Favourite performance tuning tricks [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 11 years ago.
When you have a query or stored procedure that needs performance tuning, what are some of the first things you try?
Here is the handy-dandy list of things I always give to someone asking me about optimisation.
We mainly use Sybase, but most of the advice will apply across the board.
SQL Server, for example, comes with a host of performance monitoring / tuning bits, but if you don't have anything like that (and maybe even if you do) then I would consider the following...
99% of problems I have seen are caused by putting too many tables in a join. The fix for this is to do half the join (with some of the tables) and cache the results in a temporary table. Then do the rest of the query joining on that temporary table.
Query Optimisation Checklist
Run UPDATE STATISTICS on the underlying tables
Many systems run this as a scheduled weekly job
Delete records from underlying tables (possibly archive the deleted records)
Consider doing this automatically once a day or once a week.
Rebuild Indexes
Rebuild Tables (bcp data out/in)
Dump / Reload the database (drastic, but might fix corruption)
Build new, more appropriate index
Run DBCC to see if there is possible corruption in the database
Locks / Deadlocks
Ensure no other processes running in database
Especially DBCC
Are you using row or page level locking?
Lock the tables exclusively before starting the query
Check that all processes are accessing tables in the same order
Are indices being used appropriately?
Joins will only use index if both expressions are exactly the same data type
Index will only be used if the first field(s) on the index are matched in the query
Are clustered indices used where appropriate?
range data
WHERE field between value1 and value2
Small Joins are Nice Joins
By default the optimiser will only consider the tables 4 at a time.
This means that in joins with more than 4 tables, it has a good chance of choosing a non-optimal query plan
Break up the Join
Can you break up the join?
Pre-select foreign keys into a temporary table
Do half the join and put results in a temporary table
Are you using the right kind of temporary table?
#temp tables may perform much better than #table variables with large volumes (thousands of rows).
Maintain Summary Tables
Build with triggers on the underlying tables
Build daily / hourly / etc.
Build ad-hoc
Build incrementally or teardown / rebuild
See what the query plan is with SET SHOWPLAN ON
See what’s actually happenning with SET STATS IO ON
Force an index using the pragma: (index: myindex)
Force the table order using SET FORCEPLAN ON
Parameter Sniffing:
Break Stored Procedure into 2
call proc2 from proc1
allows optimiser to choose index in proc2 if #parameter has been changed by proc1
Can you improve your hardware?
What time are you running? Is there a quieter time?
Is Replication Server (or other non-stop process) running? Can you suspend it? Run it eg. hourly?
Have a pretty good idea of the optimal path of running the query in your head.
Check the query plan - always.
Turn on STATS, so that you can examine both IO and CPU performance. Focus on driving those numbers down, not necessarily the query time (as that can be influenced by other activity, cache, etc.).
Look for large numbers of rows coming into an operator, but small numbers coming out. Usually, an index would help by limiting the number of rows coming in (which saves disk reads).
Focus on the largest cost subtree first. Changing that subtree can often change the entire query plan.
Common problems I've seen are:
If there's a lot of joins, sometimes Sql Server will choose to expand the joins, and then apply WHERE clauses. You can usually fix this by moving the WHERE conditions into the JOIN clause, or a derived table with the conditions inlined. Views can cause the same problems.
Suboptimal joins (LOOP vs HASH vs MERGE). My rule of thumb is to use a LOOP join when the top row has very few rows compared to the bottom, a MERGE when the sets are roughly equal and ordered, and a HASH for everything else. Adding a join hint will let you test your theory.
Parameter sniffing. If you ran the stored proc with unrealistic values at first (say, for testing), then the cached query plan may be suboptimal for your production values. Running again WITH RECOMPILE should verify this. For some stored procs, especially those that deal with varying sized ranges (say, all dates between today and yesterday - which would entail an INDEX SEEK - or, all dates between last year and this year - which would be better off with an INDEX SCAN) you may have to run it WITH RECOMPILE every time.
Bad indentation...Okay, so Sql Server doesn't have an issue with this - but I sure find it impossible to understand a query until I've fixed up the formatting.
Slightly off topic but if you have control over these issues...
High level and High Impact.
For high IO environments make sure your disks are for either RAID 10 or RAID 0+1 or some nested implementation of raid 1 and raid 0.
Don't use drives less than 1500K.
Make sure your disks are only used for your Database. IE no logging no OS.
Turn off auto grow or similar feature. Let the database use all storage that is anticipated. Not necessarily what is currently being used.
design your schema and indexes for the type queries.
if it's a log type table (insert only) and must be in the DB don't index it.
if your doing allot of reporting (complex selects with many joins) then you should look at creating a data warehouse with a star or snowflake schema.
Don't be afraid of replicating data in exchange for performance!
CREATE INDEX
Assure there are indexes available for your WHERE and JOIN clauses. This will speed data access greatly.
If your environment is a data mart or warehouse, indexes should abound for almost any conceivable query.
In a transactional environment, the number of indexes should be lower and their definitions more strategic so that index maintenance doesn't drag down resources. (Index maintenance is when the leaves of an index must be changed to reflect a change in the underlying table, as with INSERT, UPDATE, and DELETE operations.)
Also, be mindful of the order of fields in the index - the more selective (higher cardinality) a field, the earlier in the index it should appear. For example, say you're querying for used automobiles:
SELECT i.make, i.model, i.price
FROM dbo.inventory i
WHERE i.color = 'red'
AND i.price BETWEEN 15000 AND 18000
Price generally has higher cardinality. There may be only a few dozen colors available, but quite possibly thousands of different asking prices.
Of these index choices, idx01 provides the faster path to satisfy the query:
CREATE INDEX idx01 ON dbo.inventory (price, color)
CREATE INDEX idx02 ON dbo.inventory (color, price)
This is because fewer cars will satisfy the price point than the color choice, giving the query engine far less data to analyze.
I've been known to have two very similar indexes differing only in the field order to speed queries (firstname, lastname) in one and (lastname, firstname) in the other.
Assuming MySQL here, use EXPLAIN to find out what is going on with the query, make sure that the indexes are being used as efficiently as possible and try to eliminate file sorts. High Performance MySQL: Optimization, Backups, Replication, and More is a great book on this topic as is MySQL Performance Blog.
A trick I recently learned is that SQL Server can update local variables as well as fields, in an update statement.
UPDATE table
SET #variable = column = #variable + otherColumn
Or the more readable version:
UPDATE table
SET
#variable = #variable + otherColumn,
column = #variable
I've used this to replace complicated cursors/joins when implementing recursive calculations, and also gained a lot in performance.
Here's details and example code that made fantastic improvements in performance:
Link
#Terrapin there are a few other differences between isnull and coalesce that are worth mentioning (besides ANSI compliance, which is a big one for me).
Coalesce vs. IsNull
Sometimes in SQL Server if you use an OR in a where clause it will really jack with performance. Instead of using the OR just do two selects and union them together. You get the same results at 1000x the speed.
Look at the where clause - verify use of indexes / verify nothing silly is being done
where SomeComplicatedFunctionOf(table.Column) = #param --silly
I'll generally start with the joins - I'll knock each one of them out of the query one at a time and re-run the query to get an idea if there's a particular join I'm having a problem with.
On all of my temp tables, I like to add unique constraints (where appropriate) to make indexes, and primary keys (almost always).
declare #temp table(
RowID int not null identity(1,1) primary key,
SomeUniqueColumn varchar(25) not null,
SomeNotUniqueColumn varchar(50) null,
unique(SomeUniqueColumn)
)
#DavidM
Assuming MySQL here, use EXPLAIN to find out what is going on with the query, make sure that the indexes are being used as efficiently as possible...
In SQL Server, execution plan gets you the same thing - it tells you what indexes are being hit, etc.
Not necessarily a SQL performance trick per se but definately related:
A good idea would be to use memcached where possible as it would be much faster just fetching the precompiled data directly from memory rather than getting it from the database. There's also a flavour of MySQL that got memcached built in (third party).
Make sure your index lengths are as small as possible. This allows the DB to read more keys at a time from the file system, thus speeding up your joins. I assume this works with all DB's, but I know it's a specific recommendation for MySQL.
I've made it a habit to always use bind variables. It's possible bind variables won't help if the RDBMS doesn't cache SQL statements. But if you don't use bind variables the RDBMS doesn't have a chance to reuse query execution plans and parsed SQL statements. The savings can be enormous: http://www.akadia.com/services/ora_bind_variables.html. I work mostly with Oracle, but Microsoft SQL Server works pretty much the same way.
In my experience, if you don't know whether or not you are using bind variables, you probably aren't. If your application language doesn't support them, find one that does. Sometimes you can fix query A by using bind variables for query B.
After that, I talk to our DBA to find out what's causing the RDBMS the most pain. Note that you shouldn't ask "Why is this query slow?" That's like asking your doctor to take out you appendix. Sure your query might be the problem, but it's just as likely that something else is going wrong. As developers, we we tend to think in terms of lines of code. If a line is slow, fix that line. But a RDBMS is a really complicated system and your slow query might be the symptom of a much larger problem.
Way too many SQL tuning tips are cargo cult idols. Most of the time the problem is unrelated or minimally related to the syntax you use, so it's normally best to use the cleanest syntax you can. Then you can start looking at ways to tune the database (not the query). Only tweak the syntax when that fails.
Like any performance tuning, always collect meaningful statistics. Don't use wallclock time unless it's the user experience you are tuning. Instead look at things like CPU time, rows fetched and blocks read off of disk. Too often people optimize for the wrong thing.
First step:
Look at the Query Execution Plan!
TableScan -> bad
NestedLoop -> meh warning
TableScan behind a NestedLoop -> DOOM!
SET STATISTICS IO ON
SET STATISTICS TIME ON
Running the query using WITH (NoLock) is pretty much standard operation in my place. Anyone caught running queries on the tens-of-gigabytes tables without it is taken out and shot.
Convert NOT IN queries to LEFT OUTER JOINS if possible. For example if you want to find all rows in Table1 that are unused by a foreign key in Table2 you could do this:
SELECT *
FROM Table1
WHERE Table1.ID NOT IN (
SELECT Table1ID
FROM Table2)
But you get much better performance with this:
SELECT Table1.*
FROM Table1
LEFT OUTER JOIN Table2 ON Table1.ID = Table2.Table1ID
WHERE Table2.ID is null
Index the table(s) by the clm(s) you filter by
Prefix all tables with dbo. to prevent recompilations.
View query plans and hunt for table/index scans.
In 2005, scour the management views for missing indexes.
I like to use
isnull(SomeColThatMayBeNull, '')
Over
coalesce(SomeColThatMayBeNull, '')
When I don't need the multiple argument support that coalesce gives you.
http://blog.falafel.com/2006/04/05/SQLServerArcanaISNULLVsCOALESCE.aspx
I look out for:
Unroll any CURSOR loops and convert into set based UPDATE / INSERT statements.
Look out for any application code that:
Calls an SP that returns a large set of records,
Then in the application, goes through each record and calls an SP with parameters to update records.
Convert this into a SP that does all the work in one transaction.
Any SP that does lots of string manipulation. It's evidence that the data is not structured correctly / normalised.
Any SP's that re-invent the wheel.
Any SP's that I can't understand what it's trying to do within a minute!
SET NOCOUNT ON
Usually the first line inside my stored procedures, unless I actually need to use ##ROWCOUNT.
In SQL Server, use the nolock directive. It allows the select command to complete without having to wait - usually other transactions to finish.
SELECT * FROM Orders (nolock) where UserName = 'momma'
Remove cursors wherever the are not neceesary.
Remove function calls in Sprocs where a lot of rows will call the function.
My colleague used function calls (getting lastlogindate from userid as example) to return very wide recordsets.
Tasked with optimisation, I replaced the function calls in the sproc with the function's code: I got many sprocs' running time down from > 20 seconds to < 1.
Don't prefix Stored Procedure names with "sp_" because system procedures all start with "sp_", and SQL Server will have to search harder to find your procedure when it gets called.
Dirty reads -
set transaction isolation level read uncommitted
Prevents dead locks where transactional integrity isn't absolutely necessary (which is usually true)
I always go to SQL Profiler (if it's a stored procedure with a lot of nesting levels) or the query execution planner (if it's a few SQL statements with no nesting) first. 90% of the time you can find the problem immediately with one of these two tools.