Why does the Total Variation Loss in Tensorflow suggest to use reduce_sum instead of reduce_mean as a loss function?
This can be used as a loss-function during optimization so as to
suppress noise in images. If you have a batch of images, then you
should calculate the scalar loss-value as the sum:
loss = tf.reduce_sum(tf.image.total_variation(images))
I contacted the author and it seems there wasn't any important reason behind it at all. He mentioned that maybe reduce_sum worked better for his test case than reduce_mean but encouraged me to test both cases and choose the one which gives me the best results.
Related
For multiclass classification problems, Keras and tf.keras have metrics like SparseTopKCategoricalAccuracy and TopKCategoricalAccuracy. However, if one uses loss functions like SparseCategoricalCrossentropy or CategoricalCrossentropy, they cannot achieve the max values for these two metrics.
What is a good loss function to use when one wants to maximize SparseTopKCategoricalAccuracy or TopKCategoricalAccuracy?
I understand that SparseTopKCategoricalAccuracy is not differentiable, just like Accuracy. I am trying to find a function that can approximate the smooth loss function and yield a higher number for SparseTopKCategoricalAccuracy.
CrossEntropy is not the best loss function when you deal with Top-k accuracy because cross-entropy may be prone to overfitting on small datasets or noisy labels.
As you have already pointed out, "smooth loss" functions are developed for top-k classification with SVM. To my knowledge, there is no a "off-the-shelf" loss function in Keras/TF that is best suited for top-k. However, I suggest you to try Smooth Surrogate Loss (SSL) presented in the article and implemented in Pytorch to use with deep neural networks (see Github). It derives from multi-class SVMs as SSL creates a margin between the correct top-k predictions and the incorrect ones. The training time of SSL is comparatevely the same as in the case of cross-entropy thanking to a divide-and-conquer approach and the use of polynomials (see implementation).
I don't really understand the explanation of a stateful metric here: Keras metrics with TF backend vs tensorflow metrics
Now, if I split my evaluation data in batches and for each batch I use tf.metrics.precision for the precision, does it mean that the previous variables (counter false positives etc. ) are used for the calculation in the next batch? That would be really bad, since I want the single evaluations for each batch (that is why I do the split!)
If this is the case how can I reset the variables for each batch.
I need the single values from each batch for a mean afterwards.
The reason why tf.metrics.Precision and the like (Recall, etc) store true/false positive is because we do not want to estimate them batch-wise (unlike Accuracy or Loss, etc). The original implementation of Precision in keras (noted, not tf.keras) did exactly what you described (single evaluations for each batch and then aggregate afterward) but was later removed in version 2.0.0 because this way of computing global metric is "more misleading than helpful" (https://github.com/keras-team/keras/issues/5794).
But you may still do what you want to do, you can subclass tf.metrics.Metric and implement the logic of Precision in update_state method. The Metric API doc on Tensorflow has an example of custom Metrics. https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Metric
I hope this is helpful!
I have used 100000 samples to train a general model in Keras and achieve good performance. Then, for a particular sample, I want to use the trained weights as initialization and continue to optimize the weights to further optimize the loss of the particular sample.
However, the problem occurred. First, I load the trained weight by the keras API easily, then, I evaluate the loss of the one particular sample, and the loss is close to the loss of the validation loss during the training of the model. I think it is normal. However, when I use the trained weight as the inital and further optimize the weight over the one sample by model.fit(), the loss is really strange. It is much higher than the evaluate result and gradually became normal after several epochs.
I think it is strange that, for the same one simple and loading the same model weight, why the model.fit() and model.evaluate() return different results. I used batch normalization layers in my model and I wonder that it may be the reason. The result of model.evaluate() seems normal, as it is close to what I seen in the validation set before.
So what cause the different between fit and evaluation? How can I solve it?
I think your core issue is that you are observing two different loss values during fit and evaluate. This has been extensively discussed here, here, here and here.
The fit() function loss includes contributions from:
Regularizers: L1/L2 regularization loss will be added during training, increasing the loss value
Batch norm variations: during batch norm, running mean and variance of the batch will be collected and then those statistics will be used to perform normalization irrespective of whether batch norm is set to trainable or not. See here for more discussion on that.
Multiple batches: Of course, the training loss will be averaged over multiple batches. So if you take average of first 100 batches and evaluate on the 100th batch only, the results will be different.
Whereas for evaluate, just do forward propagation and you get the loss value, nothing random here.
Bottomline is, you should not compare train and validation loss (or fit and evaluate loss). Those functions do different things. Look for other metrics to check if your model is training fine.
I have a slightly imbalanced dataset for a binary classification problem, with a positive to negative ratio of 0.6.
I recently learned about the auc metric from this answer: https://stats.stackexchange.com/a/132832/128229, and decided to use it.
But I came across another link http://fastml.com/what-you-wanted-to-know-about-auc/ which claims that, the AUC-ROC is insensitive to class imbalance, and we should use AUC for a precision-recall curve.
The xgboost docs are not clear on which AUC they use, do they use AUC-ROC?
Also the link mentions that AUC should only be used if you do not care about the probability and only care about the ranking.
However since i am using a binary:logistic objective i think i should care about probabilities since i have to set a threshold for my predictions.
The xgboost parameter tuning guide https://github.com/dmlc/xgboost/blob/master/doc/how_to/param_tuning.md
also suggests an alternate method to handle class imbalance, by not balancing positive and negative samples and using max_delta_step = 1.
So can someone explain, when is the AUC preffered over the other method for xgboost to handle class imbalance. And if i am using AUC , what is the threshold i need to set for prediction or more generally how exactly should i use AUC for handling imbalanced binary classification problem in xgboost?
EDIT:
I also need to eliminate false positives more than false negatives, how can i achieve that, apart from simply varying the threshold, with binary:logistic objective?
According the xgboost parameters section in here there is auc and aucprwhere prstands for precision recall.
I would say you could build some intuition by running both approaches and see how the metrics behave. You can include multiple metric and even optimize with respect to whichever you prefer.
You can also monitor the false positive (rate) in each boosting round by creating custom metric.
XGboost chose to write AUC (Area under the ROC Curve), but some prefer to be more explicit and say AUC-ROC / ROC-AUC.
https://xgboost.readthedocs.io/en/latest/parameter.html
Given a simple mini-batch gradient descent problem on mnist in tensorflow (like in this tutorial), how can I retrieve the gradients for each example in the batch individually.
tf.gradients() seems to return gradients averaged over all examples in the batch. Is there a way to retrieve gradients before aggregation?
Edit: A first step towards this answer is figuring out at which point tensorflow averages the gradients over the examples in the batch. I thought this happened in _AggregatedGrads, but that doesn't appear to be the case. Any ideas?
tf.gradients returns the gradient with respect to the loss. This means that if your loss is a sum of per-example losses, then the gradient is also the sum of per-example loss gradients.
The summing up is implicit. For instance if you want to minimize the sum of squared norms of Wx-y errors, the gradient with respect to W is 2(WX-Y)X' where X is the batch of observations and Y is the batch of labels. You never explicitly form "per-example" gradients that you later sum up, so it's not a simple matter of removing some stage in the gradient pipeline.
A simple way to get k per-example loss gradients is to use batches of size 1 and do k passes. Ian Goodfellow wrote up how to get all k gradients in a single pass, for this you would need to specify gradients explicitly and not rely on tf.gradients method
To partly answer my own question after tinkering with this for a while. It appears that it is possible to manipulate gradients per example while still working in batch by doing the following:
Create a copy of tf.gradients() that accepts an extra tensor/placeholder with example-specific factors
Create a copy of _AggregatedGrads() and add a custom aggregation method that uses the example-specific factors
Call your custom tf.gradients function and give your loss as a list of slices:
custagg_gradients(
ys=[cross_entropy[i] for i in xrange(batch_size)],
xs=variables.trainable_variables(),
aggregation_method=CUSTOM,
gradient_factors=gradient_factors
)
But this will probably have the same complexity as doing individual passes per example, and I need to check if the gradients are correct :-).
One way of retrieving gradients before aggregation is to use the grads_ys parameter. A good discussion is found here:
Use of grads_ys parameter in tf.gradients - TensorFlow
EDIT:
I haven't been working with Tensorflow a lot lately, but here is an open issue tracking the best way to compute unaggregated gradients:
https://github.com/tensorflow/tensorflow/issues/675
There is a lot of sample code solutions provided by users (including myself) that you can try based on your needs.