How to force invoke method with object type input value without any type casting in a series of overloaded methods? - oop

For example I'm having a class with three overloaded methods like this:
class MyClass
{
int sum(int i)
{
// Method implementation.
}
int sum(string x)
{
// Method implementation.
}
int sum(object o)
{
// Method implementation.
}
}
My question is when I call the sum method of MyClass by passing any value (integer, string or object) it should invoke only third method (with object type input parameter)
class MainClass
{
static void Main(string[] args)
{
MyClass obj = new MyClass();
obj.sum(10);
obj.sum("X")
}
}

You said "without type casting" but you can't, because you need some way to indicate to the compiler which version to call, and the runtime uses the type it sees to do that bit. Boxing the int as an object means the compiler will pick the object version
sum(1);//call int version
sum((object)1); //call object version
sum((string)(object)"1"); //call string version
sum((object)(int)(object)1); //call object version

First of all, let me say that if you sometimes want to call one version of the sum function when working with ints and sometimes want to call another, overloading probably isn't the right tool to use. Overloading works best when you are implementing conceptually the same operation for a number of different types, and you want the compiler to figure out automatically which function is the right one to call for each type; if you need more manual control over which function is called, you're probably better off using different names.
That said, if you're sure that this is what you want to do, you could implement the overloaded version for object in terms of another function in the public interface, as in:
class MyClass
{
int sum(int i)
{
// Method implementation.
}
int sum(string x)
{
// Method implementation.
}
int sum(object o)
{
sum_object(o);
}
int sum_object(object o)
{
// Method implementation for objects
}
}
Then, when you want to apply the object version to int and string objects, you just call sum_object directly instead.

Related

Overriding parameter types?

I would like to override the parameter type of a method in its subclasses, I thought generics could be used for this but that does not seem to work (at least not the way I am doing it).
abstract class A {
bool someMethod<T>(T x);
}
Then override it like so:
class B extends A {
bool someMethod<bool>(bool x) {
// error: isn't a valid override
}
}
I have had to default to using type dynamic x for the parameter type, but that forfeits runtime safety checks and means a lot of type checking whenever the method is implemented.
Is this type of extension possible?
It's possible, but not the way you do it.
What you declare is a generic method, where each invocation gets to pass the type argument to the function.
What you probably want is:
abstract class A<T> {
bool someMethod(T x);
}
class B extends A<bool> {
bool someMethod(bool x) {
return true;
}
}
That makes the type a parameter of the subclass, not the method, so each subclass can define its own type.
(Here you get into problems with Dart's covariant generics, because you can write:
A<Object> a = B();
a.someMethod("a"); // run-time error.
Your type variable occurs only in places where a value of that type is needed, not where one is provided, so casting to the superclass A<Object> make the method more permissive than it can support. The compiler inserts a run-time type check on the argument, which is what the example code here hits.)

Mockito mocking method with class parameter vs actual object parameter

What is the difference between these two as per Mockito -
Mockito.when(serviceObject.myMethod(Customer.class)).thenThrow(new
RuntimeException());
and
Customer customer = new Customer();
Mockito.when(serviceObject.myMethod(customer)).thenThrow(new
RuntimeException());
And if both serve the same purpose then using which one is considered to be best practice?
There is a misunderstanding on your side - that method specification myMethod(SomeClass.class) is only possible when the signature of that method allows for a class parameter. Like:
Whatever myMethod(Object o) {
or directly
Whatever myMethod(Class<X> clazz) {
In other words: it is not Mockito that does something special about a parameter that happens to be of class Class!
Thus your first option is not something that works "in general". Example: I put down this code in a unit test:
static class Inner {
public int foo(String s) { return 5; }
}
#Test
public void testInner() {
Inner mocked = mock(Inner.class);
when(mocked.foo(Object.class)).thenReturn(4);
System.out.println(mocked.foo(""));
}
And guess what - the above does not compile. Because foo() doesn't allow for a Class parameter. We can rewrite to
static class Inner {
public int foo(Object o) { return 5; }
}
#Test
public void testInner() {
Inner mocked = mock(Inner.class);
when(mocked.foo(Object.class)).thenReturn(4);
System.out.println(mocked.foo(""));
}
And now the above compiles - but prints 0 (zero) when invoked. Because the above would be the same as mocked.foo(eq(Object.class)). In other words: when your method signature allows for passing a Class instance and you then pass a class instance, that is a simple mocking specification for mockito. In my example: when the incoming object would be Object.class - then 4 would be returned. But the incoming object is "" - therefore the Mockito default kicks in and 0 is returned.
I am with the other answer here - I think you are mixing up that older versions of Mockito asked you to write down when(mocked.foo(any(ExpectedClass.class))) - which can nowadays be written as when(mocked.foo(any())). But when(mocked.foo(ExpectedClass.class)) is not a Mockito construct - it is a simple method specification that gives a specific object to "match on" - and that specific object happens to be an instance of class Class.
First one which uses generic Customer class to match type can also be written as:
Mockito.when(serviceObject.myMethod(Mockito.any(Customer.class))).thenThrow(new
RuntimeException());
In case of the second one, you are passing the actual object that will be used in stubbing.
Usage:
If your method myMethod throws the exception based on the state of the Customer object then you can use the latter approach, where you can set the state of the Customer object appropriately.
However If your method myMethod does not depend on the Customer object to throw the exception rather you need it only to pass it as an argument just to invoke the method, then you can take the former approach.

What's the purpose of allowing the declaration of an abstract method in a non-abstract class?

According to this article, it's possible, in Dart, to define a non-abstract class to have an abstract (or not-implemented) method. The abstract method causes a warning, but does not prevent instantiation.
What's the purpose of allowing the declaration of an abstract method in a non-abstract (or concrete) class in Dart? Why was Dart designed to work in this way?
The specification is actually very explicit about declaring abstract methods in a concrete class:
It is a static warning if an abstract member m is declared or inherited in a concrete class
We wish to warn if one declares a concrete class with abstract members.
It is a static warning if a concrete class has an abstract member (declared or inherited).
They don't have any intended purpose for it, which is why they issue warnings. If you're familiar with Java: it's similar to accessing a static member via an object, which is also pointless and triggers a warning.
As for why it passes compilation, Dart uses an optional type system, which means typing concepts should not affect the semantics of the language, and that's simply what Dart is enforcing:
The purpose of an abstract method is to provide a declaration for purposes such as type checking and reflection.
The static checker will report some violations of the type rules, but such violations do not abort compilation or preclude execution.
An abstract method in a concrete class allows you to provide the type signature for a method that is implemented via noSuchMethod() instead. Providing a noSuchMethod() implementation will also silence the warning.
In strong mode, simply having an abstract method in a concrete class will result in an error, unless the class also implements the noSuchMethod() interface.
In short, the purpose of abstract methods in a concrete class is to provide type signatures for noSuchMethod() implementations. This avoids warnings for calling an unknown method and in strong mode (which is the default for dartdevc, and will be first the default and then mandatory for Dart 2.0) these type signatures are necessary for code with noSuchMethod() to even compile, unless the target is of type dynamic.
Example:
class A {
void f();
dynamic noSuchMethod(Invocation inv) => null;
}
void main() {
var a = new A();
a.f();
}
If we replace a.f() with (say) a.f(0), then this will result in an error (in strong mode) for having called the method with the wrong number of parameters. If we omit the void f() declaration, then we'll get an error that A does not have a method f(). If we omit the noSuchMethod() implementation, then the complaint will be that f() lacks a method body, even though A isn't abstract.
The following code provides a more realistic example:
import "dart:mirrors";
class DebugList<T> implements List<T> {
List<T> _delegate;
InstanceMirror _mirror;
DebugList(this._delegate) {
_mirror = reflect(_delegate);
}
dynamic noSuchMethod(Invocation inv) {
print("entering ${inv.memberName}");
var result = _mirror.delegate(inv);
print("leaving ${inv.memberName}");
return result;
}
}
void main() {
List<int> list = new DebugList<int>([1, 2, 3]);
int len = list.length;
for (int i = 0; i < len; i++) print(list[i]);
}
This example creates a debugging decorator for List<T>, showing all method invocations. We use implements List<T> to pull in the entire list interface, inheriting dozens of abstract methods. This would normally result in warnings (or in strong mode, errors) when run through dartanalyzer, as we're missing implementations for all these methods normally provided by List<T>. Providing a noSuchMethod() implementation silences these warnings/errors.
While we could also manually wrap all 50+ methods, this would be a lot of typing. The above approach also will continue to work if new methods are added to the list interface without us having to change our code.
Use cases for explicitly listing methods in a concrete class are less common, but can also occur. An example would be the addition of getters or setters to such a debugging decorator that allows us to inspect or set instance variables of the delegate. We will need to add them to the interface, anyway, to avoid warnings and errors from using them; the noSuchMethod() implementation can then implement them using getField() and setField(). Here's a variant of the previous example, using stacks instead of lists:
// main.dart
import "dart:mirrors";
import "stack.dart";
class DebugStack<T> implements Stack<T> {
Stack<T> _delegate;
InstanceMirror _mirror;
DebugStack(this._delegate) {
_mirror = reflect(_delegate);
}
dynamic _get(Symbol sym) {
// some magic so that we can retrieve private fields
var name = MirrorSystem.getName(sym);
var sym2 = MirrorSystem.getSymbol(name, _mirror.type.owner);
return _mirror.getField(sym2).reflectee;
}
List<T> get _data;
dynamic noSuchMethod(Invocation inv) {
dynamic result;
print("entering ${inv.memberName}");
if (inv.isGetter)
result = _get(inv.memberName);
else
result = _mirror.delegate(inv);
print("leaving ${inv.memberName}");
return result;
}
}
void main() {
var stack = new DebugStack<int>(new Stack<int>.from([1, 2, 3]));
print(stack._data);
while (!stack.isEmpty) {
print(stack.pop());
}
}
// stack.dart
class Stack<T> {
List<T> _data = [];
Stack.empty();
Stack.from(Iterable<T> src) {
_data.addAll(src);
}
void push(T item) => _data.add(item);
T pop() => _data.removeLast();
bool get isEmpty => _data.length == 0;
}
Note that the abstract declaration of the _data getter is crucial for type checking. If we were to remove it, we'd get a warning even without strong mode, and in strong mode (say, with dartdevc or dartanalyzer --strong), it will fail:
$ dartdevc -o main.js main.dart
[error] The getter '_data' isn't defined for the class 'DebugStack<int>' (main.dart, line 36, col 15)
Please fix all errors before compiling (warnings are okay).

How are overridden properties handled in init blocks?

I'm trying to understand why the following code throws:
open class Base(open val input: String) {
lateinit var derived: String
init {
derived = input.toUpperCase() // throws!
}
}
class Sub(override val input: String) : Base(input)
When invoking this code like this:
println(Sub("test").derived)
it throws an exception, because at the time toUpperCase is called, input resolves to null. I find this counter intuitive: I pass a non-null value to the primary constructor, yet in the init block of the super class it resolves to null?
I think I have a vague idea of what might be going on: since input serves both as a constructor argument as well as a property, the assignment internally calls this.input, but this isn't fully initialized yet. It's really odd: in the IntelliJ debugger, input resolves normally (to the value "test"), but as soon as I invoke the expression evaluation window and inspect input manually, it's suddenly null.
Assuming this is expected behavior, what do you recommend to do instead, i.e. when one needs to initialize fields derived from properties of the same class?
UPDATE:
I've posted two even more concise code snippets that illustrate where the confusion stems from:
https://gist.github.com/mttkay/9fbb0ddf72f471465afc
https://gist.github.com/mttkay/5dc9bde1006b70e1e8ba
The original example is equivalent to the following Java program:
class Base {
private String input;
private String derived;
Base(String input) {
this.input = input;
this.derived = getInput().toUpperCase(); // Initializes derived by calling an overridden method
}
public String getInput() {
return input;
}
}
class Derived extends Base {
private String input;
public Derived(String input) {
super(input); // Calls the superclass constructor, which tries to initialize derived
this.input = input; // Initializes the subclass field
}
#Override
public String getInput() {
return input; // Returns the value of the subclass field
}
}
The getInput() method is overridden in the Sub class, so the code calls Sub.getInput(). At this time, the constructor of the Sub class has not executed, so the backing field holding the value of Sub.input is still null. This is not a bug in Kotlin; you can easily run into the same problem in pure Java code.
The fix is to not override the property. (I've seen your comment, but this doesn't really explain why you think you need to override it.)
The confusion comes from the fact that you created two storages for the input value (fields in JVM). One is in base class, one in derived. When you are reading input value in base class, it calls virtual getInput method under the hood. getInput is overridden in derived class to return its own stored value, which is not initialised before base constructor is called. This is typical "virtual call in constructor" problem.
If you change derived class to actually use property of super type, everything is fine again.
class Sub(input: String) : Base(input) {
override val input : String
get() = super.input
}

Method returns an object of a different class

I have noticed a situation where there is a class (say: ClassA) with variable declarations and various methods. And in another class (say: Class B), there is a method(MethodofClassB()) with the return type of the method as ClassA.
so it is like:
Class A
{
variable i,j;
public int MethodA()
{
//some operation
}
}
Class B
{
variable x,y;
public static A MethodB()
{
//some operation
return obj;
}
}
1) I understand that MethodB() return an object of ClassA. Waty would be the use(the intention) of returning the object of ClassA
2) What is the reason for defining MethodB() as Public static. what would happen if static was not used for MethodB()
3)What would the returned objct look like. I mean if my method returned an integer, it would return some numerical value say '123' . If a method returns an object of a class, what would be in the returrned value.
please help me understand this with a small example
1) I understand that MethodB() return an object of ClassA. Waty would be the use(the intention) of returning the object of ClassA
Depends on what the method does, which isn't illustrated in this example. If the result of the operation is an instance of A then it stands to reason that it would return an instance of A, whatever A is.
For example, if A is a Car and B is a CarFactory then the method is likely producing a new Car. So it would return a Car that's been produced.
2) What is the reason for defining MethodB() as Public static. what would happen if static was not used for MethodB()
public allows it to be accessed by other objects. static means it's not associated with a particular instance of B. Both are subjective based, again, on the purpose of the method (which isn't defined in the example). Being static, it can be called as such:
var newInstance = B.MethodB();
If it wasn't static then an instance of B would be required:
var objectB = new B();
var newInstance = objectB.MethodB();
There are more and more implications here, including things like memory/resource usage and thread safety. All stemming from the purpose and business logic meaning of what B is and what MethodB does.
3)What would the returned objct look like. I mean if my method returned an integer, it would return some numerical value say '123' . If a method returns an object of a class, what would be in the returrned value.
It would be an instance of A. Similar to creating an instance here:
var objectA = new A();
This method also creates (or in some way gets) an instance:
var objectA = B.MethodB();
Without knowing more about what A is, what its constructor does, and what MethodB does, these two operations are otherwise the same.
First, your code is incorrect. There is no "ClassA" class. The class name is A, so the return type should be A not ClassA.
Second, the standard Java coding standards say to start methods and variables with lower case letters. So, your example should have been:
Class A
{
A anA;
B aB;
public int methodA()
{
//some operation
}
}
Class B
{
SomeType x, y;
public static A methodB()
{
//some operation
return obj;
}
}
David's answer shortly before mine is technically correct on points 1 and 2, although he also uses your mistake of calling the A type ClassA. His code for his answer to point 3, though, is incorrect and misleading. I would change his wording to this:
`3)What would the returned objct look like. I mean if my method returned an
integer, it would return some numerical value say '123' . If a method returns
an object of a class, what would be in the returrned value`.
It would be an instance of class A. Similar to creating an instance here:
A objectA = new A();
This method also creates (or in some way gets) an instance:
A objectA = B.methodB();
Without knowing more about what class A is, what its constructor does, and what methodB does, these two operations are otherwise the same.