Use loss in the keras model function - tensorflow

I am trying to build the a very simple model using keras using the Model function, like below, where the input and output of the Model function are [img,labels] and the loss.
I am confused why this code is not working, if the output cannot be the loss. How should the Model function work and when should we use the Model function? Thanks.
sess = tf.Session()
K.set_session(sess)
K.set_learning_phase(1)
img = Input((784,),name='img')
labels = Input((10,),name='labels')
# img = tf.placeholder(tf.float32, shape=(None, 784))
# labels = tf.placeholder(tf.float32, shape=(None, 10))
x = Dense(128, activation='relu')(img)
x = Dropout(0.5)(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)
preds = Dense(10, activation='softmax')(x)
from keras.losses import binary_crossentropy
#loss = tf.reduce_mean(categorical_crossentropy(labels, preds))
loss = binary_crossentropy(labels, preds)
print(type(loss))
model = Model([img,labels], loss, name='squeezenet')
model.summary()

As #yu-yang pointed out, the loss is specified with compile().
If you think about it, it makes sense because the real output of your model is your prediction, not the loss, the loss is only used to train the model.
A working example of your network:
import keras
from keras.optimizers import Adam
from keras.models import Model
from keras.layers import Input, Dense, Dropout
from keras.losses import categorical_crossentropy
img = Input((784,),name='img')
x = Dense(128, activation='relu')(img)
x = Dropout(0.5)(x)
x = Dense(128, activation='relu')(x)
x = Dropout(0.5)(x)
preds = Dense(10, activation='softmax')(x)
model = Model(inputs=img, outputs=preds, name='squeezenet')
model.compile(optimizer=Adam(),
loss=categorical_crossentropy,
metrics=['acc'])
model.summary()
Output:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
img (InputLayer) (None, 784) 0
_________________________________________________________________
dense_32 (Dense) (None, 128) 100480
_________________________________________________________________
dropout_21 (Dropout) (None, 128) 0
_________________________________________________________________
dense_33 (Dense) (None, 128) 16512
_________________________________________________________________
dropout_22 (Dropout) (None, 128) 0
_________________________________________________________________
dense_34 (Dense) (None, 10) 1290
=================================================================
Total params: 118,282
Trainable params: 118,282
Non-trainable params: 0
_________________________________________________________________
With MNIST dataset:
from keras.datasets import mnist
from keras.utils import to_categorical
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(-1, 784)
y_train = to_categorical(y_train, num_classes=10)
x_test = x_test.reshape(-1, 784)
y_test = to_categorical(y_test, num_classes=10)
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))
Output:
Train on 60000 samples, validate on 10000 samples
Epoch 1/10
60000/60000 [==============================] - 4s - loss: 12.2797 - acc: 0.2360 - val_loss: 11.0902 - val_acc: 0.3116
Epoch 2/10
60000/60000 [==============================] - 4s - loss: 10.4161 - acc: 0.3527 - val_loss: 8.7122 - val_acc: 0.4589
Epoch 3/10
60000/60000 [==============================] - 4s - loss: 9.5797 - acc: 0.4051 - val_loss: 8.9226 - val_acc: 0.4460
Epoch 4/10
60000/60000 [==============================] - 4s - loss: 9.2017 - acc: 0.4285 - val_loss: 8.0564 - val_acc: 0.4998
Epoch 5/10
60000/60000 [==============================] - 4s - loss: 8.8558 - acc: 0.4501 - val_loss: 8.0878 - val_acc: 0.4980
Epoch 6/10
60000/60000 [==============================] - 5s - loss: 8.8239 - acc: 0.4521 - val_loss: 8.2495 - val_acc: 0.4880
Epoch 7/10
60000/60000 [==============================] - 4s - loss: 8.7842 - acc: 0.4547 - val_loss: 7.7146 - val_acc: 0.5211
Epoch 8/10
60000/60000 [==============================] - 4s - loss: 8.7395 - acc: 0.4575 - val_loss: 7.7944 - val_acc: 0.5163
Epoch 9/10
60000/60000 [==============================] - 5s - loss: 8.7109 - acc: 0.4593 - val_loss: 7.8235 - val_acc: 0.5145
Epoch 10/10
60000/60000 [==============================] - 4s - loss: 8.4927 - acc: 0.4729 - val_loss: 7.5933 - val_acc: 0.5288

Related

Transfer learning model not learning much, validation plateau at 45% while train go up to 90%

So it's been days i've been working on this model on image classification. I have 70000 images and 375 classes. I've tried training it with Vgg16, Xception, Resnet & Mobilenet ... and I always get the same limit of 45% on the validation.
As you can see here
I've tried adding dropout layers and regularization and it gets the same result for validation.
Data augmentation didn't do much to help either
Any ideas why this isn't working ?
Here's a snipped of the code of the last model I used:
from keras.models import Sequential
from keras.layers import Dense
from tensorflow import keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from keras import regularizers
from PIL import Image
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
validation_datagen = ImageDataGenerator(rescale=1./255)
target_size = (height, width)
datagen = ImageDataGenerator(rescale=1./255,
validation_split=0.2)
train_generator = datagen.flow_from_directory(
path,
target_size=(height, width),
batch_size=batchSize,
shuffle=True,
class_mode='categorical',
subset='training')
validation_generator = datagen.flow_from_directory(
path,
target_size=(height, width),
batch_size=batchSize,
class_mode='categorical',
subset='validation')
num_classes = len(train_generator.class_indices)
xception_model = Xception(weights='imagenet',input_shape=(width, height, 3), include_top=False,classes=num_classes)
x = xception_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(512, activation='relu')(x)
out = Dense(num_classes, activation='softmax')(x)
opt = Adam()
model.compile(optimizer=opt, loss='categorical_crossentropy', metrics=['accuracy'])
n_epochs = 15
history = model.fit(
train_generator,
steps_per_epoch = train_generator.samples // batchSize,
validation_data = validation_generator,
validation_steps = validation_generator.samples // batchSize,
verbose=1,
epochs = n_epochs)
Yes, you may need a balanced dataset among each category in your dataset for better model training performance. Please try again by changing class_mode='sparse' and loss='sparse_categorical_crossentropy' because you are using the image dataset. Also freeze the pretrained model layers 'xception_model.trainable = False'.
Check the below code: (I have used a flower dataset of 5 classes)
xception_model = tf.keras.applications.Xception(weights='imagenet',input_shape=(width, height, 3), include_top=False,classes=num_classes)
xception_model.trainable = False
x = xception_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(32, activation='relu')(x)
out = Dense(num_classes, activation='softmax')(x)
opt = tf.keras.optimizers.Adam()
model = keras.Model(inputs=xception_model.input, outputs=out)
model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_generator, epochs=10, validation_data=validation_generator)
Output:
Epoch 1/10
217/217 [==============================] - 23s 95ms/step - loss: 0.5945 - accuracy: 0.7793 - val_loss: 0.4610 - val_accuracy: 0.8337
Epoch 2/10
217/217 [==============================] - 20s 91ms/step - loss: 0.3439 - accuracy: 0.8797 - val_loss: 0.4550 - val_accuracy: 0.8419
Epoch 3/10
217/217 [==============================] - 20s 93ms/step - loss: 0.2570 - accuracy: 0.9150 - val_loss: 0.4437 - val_accuracy: 0.8384
Epoch 4/10
217/217 [==============================] - 20s 91ms/step - loss: 0.2040 - accuracy: 0.9340 - val_loss: 0.4592 - val_accuracy: 0.8477
Epoch 5/10
217/217 [==============================] - 20s 91ms/step - loss: 0.1649 - accuracy: 0.9494 - val_loss: 0.4686 - val_accuracy: 0.8512
Epoch 6/10
217/217 [==============================] - 20s 92ms/step - loss: 0.1301 - accuracy: 0.9589 - val_loss: 0.4805 - val_accuracy: 0.8488
Epoch 7/10
217/217 [==============================] - 20s 93ms/step - loss: 0.0966 - accuracy: 0.9754 - val_loss: 0.4993 - val_accuracy: 0.8442
Epoch 8/10
217/217 [==============================] - 20s 91ms/step - loss: 0.0806 - accuracy: 0.9806 - val_loss: 0.5488 - val_accuracy: 0.8372
Epoch 9/10
217/217 [==============================] - 20s 91ms/step - loss: 0.0623 - accuracy: 0.9864 - val_loss: 0.5802 - val_accuracy: 0.8360
Epoch 10/10
217/217 [==============================] - 22s 100ms/step - loss: 0.0456 - accuracy: 0.9896 - val_loss: 0.6005 - val_accuracy: 0.8360

Why masking input produces the same loss as unmasked input on Keras?

I am experimenting with LSTM using variable-length input due to this reason. I wanted to be sure that loss is calculated correctly under masking. So, I trained the below model that uses Masking layer on padded sequences.
from tensorflow.keras.layers import LSTM, Masking, Dense
from tensorflow.keras.utils import to_categorical
from tensorflow.keras import models, losses
import tensorflow as tf
import numpy as np
import os
"""
For generating reproducible results, set seed.
"""
def set_seed(seed):
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
tf.random.set_seed(seed)
"""
Set some right most indices to mask value like padding
"""
def create_padded_seq(num_samples, timesteps, num_feats, mask_value):
feats = np.random.random([num_samples, timesteps, num_feats]).astype(np.float32) # Generate samples
for i in range(0, num_samples):
rand_index = np.random.randint(low=2, high=timesteps, size=1)[0] # Apply padding
feats[i, rand_index:, 0] = mask_value
return feats
set_seed(42)
num_samples = 100
timesteps = 6
num_feats = 1
num_classes = 3
num_lstm_cells = 1
mask_value = -100
num_epochs = 5
X_train = create_padded_seq(num_samples, timesteps, num_feats, mask_value)
y_train = np.random.randint(num_classes, size=num_samples)
cat_y_train = to_categorical(y_train, num_classes)
masked_model = models.Sequential(name='masked')
masked_model.add(Masking(mask_value=mask_value, input_shape=(timesteps, num_feats)))
masked_model.add(LSTM(num_lstm_cells, return_sequences=False))
masked_model.add(Dense(num_classes, activation='relu'))
masked_model.compile(loss=losses.categorical_crossentropy, optimizer='adam', metrics=["accuracy"])
print(masked_model.summary())
masked_model.fit(X_train, cat_y_train, batch_size=1, epochs=5, verbose=True)
This is the verbose output,
Model: "masked"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
masking (Masking) (None, 6, 1) 0
_________________________________________________________________
lstm (LSTM) (None, 1) 12
_________________________________________________________________
dense (Dense) (None, 3) 6
=================================================================
Total params: 18
Trainable params: 18
Non-trainable params: 0
_________________________________________________________________
None
Epoch 1/5
100/100 [==============================] - 0s 2ms/step - loss: 10.6379 - accuracy: 0.3400
Epoch 2/5
100/100 [==============================] - 0s 2ms/step - loss: 10.6379 - accuracy: 0.3400
Epoch 3/5
100/100 [==============================] - 0s 2ms/step - loss: 10.6379 - accuracy: 0.3400
Epoch 4/5
100/100 [==============================] - 0s 2ms/step - loss: 10.6379 - accuracy: 0.3400
Epoch 5/5
100/100 [==============================] - 0s 2ms/step - loss: 10.6379 - accuracy: 0.3400
I also removed Masking layer and trained another model on the same data to see the effect of masking, this is the model,
unmasked_model = models.Sequential(name='unmasked')
unmasked_model.add(LSTM(num_lstm_cells, return_sequences=False, input_shape=(timesteps, num_feats)))
unmasked_model.add(Dense(num_classes, activation='relu'))
unmasked_model.compile(loss=losses.categorical_crossentropy, optimizer='adam', metrics=["accuracy"])
print(unmasked_model.summary())
unmasked_model.fit(X_train, cat_y_train, batch_size=1, epochs=5, verbose=True)
And this is the verbose output,
Model: "unmasked"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm (LSTM) (None, 1) 12
_________________________________________________________________
dense (Dense) (None, 3) 6
=================================================================
Total params: 18
Trainable params: 18
Non-trainable params: 0
_________________________________________________________________
None
Epoch 1/5
100/100 [==============================] - 0s 1ms/step - loss: 10.6379 - accuracy: 0.3400
Epoch 2/5
100/100 [==============================] - 0s 2ms/step - loss: 10.6379 - accuracy: 0.3400
Epoch 3/5
100/100 [==============================] - 0s 1ms/step - loss: 10.6379 - accuracy: 0.3400
Epoch 4/5
100/100 [==============================] - 0s 1ms/step - loss: 10.6379 - accuracy: 0.3400
Epoch 5/5
100/100 [==============================] - 0s 1ms/step - loss: 10.6379 - accuracy: 0.3400
Losses are the same in both outputs, what is the reason for that ? It seems like Masking layer has no effect on loss, is that correct ? If not, then how can I observe the effect of Masking layer ?
In the case of a multi-classification task, the problem seems to be the last activation function...
If you change relu with softmax, your network can produce probabilities in the range [0,1]

Convolutional Neural Network seems to be randomly guessing

So I am currently trying to build a race recognition program using a convolution neural network. I'm inputting 200px by 200px versions of the UTKFaceRegonition dataset (put my dataset on a google drive if you want to take a look). Im using 8 different classes (4 races * 2 genders) using keras and tensorflow, each having about 700 images but I have done it with 1000. The problem is when I run the network it gets at best 13.5% accuracy and about 11-12.5% validation accuracy, with a loss around 2.079-2.081, even after 50 epochs or so it won't improve at all. My current hypothesis is that it is randomly guessing stuff/not learning because 8/100=12.5%, which is about what it is getting and on other models I have made with 3 classes it was getting about 33%
I noticed the validation accuracy is different on the first and sometimes second epoch, but after that it ends up staying constant. I've increased the pixel resolution, changed amount of layers, types of layer and neurons per layer, I've tried optimizers (sgd at the normal lr and at very large and small (.1 and 10^-6) and I've tried different loss functions like KLDivergence but nothing seems to have any effect on it except KLDivergence which on one run did pretty well (about 16%) but then it flopped again. Some ideas I had are maybe theres too much noise in the dataset or maybe it has to do with the amount of dense layers, but honestly I dont know why it is not learning.
Heres the code to make the tensors
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import os
import cv2
import random
import pickle
WIDTH_SIZE = 200
HEIGHT_SIZE = 200
CATEGORIES = []
for CATEGORY in os.listdir('./TRAINING'):
CATEGORIES.append(CATEGORY)
DATADIR = "./TRAINING"
training_data = []
def create_training_data():
for category in CATEGORIES:
path = os.path.join(DATADIR, category)
class_num = CATEGORIES.index(category)
for img in os.listdir(path)[:700]:
try:
img_array = cv2.imread(os.path.join(path,img), cv2.IMREAD_COLOR)
new_array = cv2.resize(img_array,(WIDTH_SIZE,HEIGHT_SIZE))
training_data.append([new_array,class_num])
except Exception as error:
print(error)
create_training_data()
random.shuffle(training_data)
X = []
y = []
for features, label in training_data:
X.append(features)
y.append(label)
X = np.array(X).reshape(-1, WIDTH_SIZE, HEIGHT_SIZE, 3)
y = np.array(y)
pickle_out = open("X.pickle", "wb")
pickle.dump(X, pickle_out)
pickle_out = open("y.pickle", "wb")
pickle.dump(y, pickle_out)
Heres my built model
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D
import pickle
pickle_in = open("X.pickle","rb")
X = pickle.load(pickle_in)
pickle_in = open("y.pickle","rb")
y = pickle.load(pickle_in)
X = X/255.0
model = Sequential()
model.add(Conv2D(256, (2,2), activation = 'relu', input_shape = X.shape[1:]))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Dropout(0.4))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Dropout(0.4))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Conv2D(256, (2,2), activation = 'relu'))
model.add(Dropout(0.4))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(8, activation="softmax"))
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['accuracy'])
model.fit(X, y, batch_size=16,epochs=100,validation_split=.1)
Heres a log of 10 epochs I ran.
5040/5040 [==============================] - 55s 11ms/sample - loss: 2.0803 - accuracy: 0.1226 - val_loss: 2.0796 - val_accuracy: 0.1250
Epoch 2/100
5040/5040 [==============================] - 53s 10ms/sample - loss: 2.0797 - accuracy: 0.1147 - val_loss: 2.0798 - val_accuracy: 0.1161
Epoch 3/100
5040/5040 [==============================] - 53s 10ms/sample - loss: 2.0797 - accuracy: 0.1190 - val_loss: 2.0800 - val_accuracy: 0.1161
Epoch 4/100
5040/5040 [==============================] - 53s 11ms/sample - loss: 2.0797 - accuracy: 0.1173 - val_loss: 2.0799 - val_accuracy: 0.1107
Epoch 5/100
5040/5040 [==============================] - 52s 10ms/sample - loss: 2.0797 - accuracy: 0.1183 - val_loss: 2.0802 - val_accuracy: 0.1107
Epoch 6/100
5040/5040 [==============================] - 52s 10ms/sample - loss: 2.0797 - accuracy: 0.1226 - val_loss: 2.0801 - val_accuracy: 0.1107
Epoch 7/100
5040/5040 [==============================] - 52s 10ms/sample - loss: 2.0797 - accuracy: 0.1238 - val_loss: 2.0803 - val_accuracy: 0.1107
Epoch 8/100
5040/5040 [==============================] - 54s 11ms/sample - loss: 2.0797 - accuracy: 0.1169 - val_loss: 2.0802 - val_accuracy: 0.1107
Epoch 9/100
5040/5040 [==============================] - 52s 10ms/sample - loss: 2.0797 - accuracy: 0.1212 - val_loss: 2.0803 - val_accuracy: 0.1107
Epoch 10/100
5040/5040 [==============================] - 53s 11ms/sample - loss: 2.0797 - accuracy: 0.1177 - val_loss: 2.0802 - val_accuracy: 0.1107
So yeah, any help on why my network seems to be just guessing? Thank you!
The problem lies in the design of you network.
Typically you'd want in the first layers to learn high-level features and use larger kernel with odd size. Currently you're essentially interpolating neighbouring pixels. Why odd size? Read e.g. here.
Number of filters typically increases from small (e.g. 16, 32) number to larger values when going deeper into the network. In your network all layers learn the same number of filters. The reasoning is that the deeper you go, the more fine-grained features you'd like to learn - hence increase in number of filters.
In your ANN each layer also cuts out valuable information from the image (by default you are using valid padding).
Here's a very basic network that gets me after 40 seconds and 10 epochs over 95% training accuracy:
import pickle
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
pickle_in = open("X.pickle","rb")
X = pickle.load(pickle_in)
pickle_in = open("y.pickle","rb")
y = pickle.load(pickle_in)
X = X/255.0
model = Sequential()
model.add(Conv2D(16, (5,5), activation = 'relu', input_shape = X.shape[1:], padding='same'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(32, (3,3), activation = 'relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Conv2D(64, (3,3), activation = 'relu', padding='same'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
model.add(Dense(512))
model.add(Dense(8, activation='softmax'))
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['accuracy'])
Architecture:
Model: "sequential_4"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_19 (Conv2D) (None, 200, 200, 16) 1216
_________________________________________________________________
max_pooling2d_14 (MaxPooling (None, 100, 100, 16) 0
_________________________________________________________________
conv2d_20 (Conv2D) (None, 100, 100, 32) 4640
_________________________________________________________________
max_pooling2d_15 (MaxPooling (None, 50, 50, 32) 0
_________________________________________________________________
conv2d_21 (Conv2D) (None, 50, 50, 64) 18496
_________________________________________________________________
max_pooling2d_16 (MaxPooling (None, 25, 25, 64) 0
_________________________________________________________________
flatten_4 (Flatten) (None, 40000) 0
_________________________________________________________________
dense_7 (Dense) (None, 512) 20480512
_________________________________________________________________
dense_8 (Dense) (None, 8) 4104
=================================================================
Total params: 20,508,968
Trainable params: 20,508,968
Non-trainable params: 0
Training:
Train on 5040 samples, validate on 560 samples
Epoch 1/10
5040/5040 [==============================] - 7s 1ms/sample - loss: 2.2725 - accuracy: 0.1897 - val_loss: 1.8939 - val_accuracy: 0.2946
Epoch 2/10
5040/5040 [==============================] - 6s 1ms/sample - loss: 1.7831 - accuracy: 0.3375 - val_loss: 1.8658 - val_accuracy: 0.3179
Epoch 3/10
5040/5040 [==============================] - 6s 1ms/sample - loss: 1.4857 - accuracy: 0.4623 - val_loss: 1.9507 - val_accuracy: 0.3357
Epoch 4/10
5040/5040 [==============================] - 6s 1ms/sample - loss: 1.1294 - accuracy: 0.6028 - val_loss: 2.1745 - val_accuracy: 0.3250
Epoch 5/10
5040/5040 [==============================] - 6s 1ms/sample - loss: 0.8060 - accuracy: 0.7179 - val_loss: 3.1622 - val_accuracy: 0.3000
Epoch 6/10
5040/5040 [==============================] - 6s 1ms/sample - loss: 0.5574 - accuracy: 0.8169 - val_loss: 3.7494 - val_accuracy: 0.2839
Epoch 7/10
5040/5040 [==============================] - 6s 1ms/sample - loss: 0.3756 - accuracy: 0.8813 - val_loss: 4.9125 - val_accuracy: 0.2643
Epoch 8/10
5040/5040 [==============================] - 6s 1ms/sample - loss: 0.3001 - accuracy: 0.9036 - val_loss: 5.6300 - val_accuracy: 0.2821
Epoch 9/10
5040/5040 [==============================] - 6s 1ms/sample - loss: 0.2345 - accuracy: 0.9337 - val_loss: 5.7263 - val_accuracy: 0.2679
Epoch 10/10
5040/5040 [==============================] - 6s 1ms/sample - loss: 0.1549 - accuracy: 0.9581 - val_loss: 7.3682 - val_accuracy: 0.2732
As you can see, validation score is terrible, but the point was to demonstrate that poor architecture can prevent training altogether.

input_shape with image_generator in Tensorflow

I'm trying to use this approach in Tensorflow 2.X to load large dataset that does not fit in memory.
I have a folder with X sub-folders that contains images. Each sub-folder is a class.
\dataset
-\class1
-img1_1.jpg
-img1_2.jpg
-...
-\classe2
-img2_1.jpg
-img2_2.jpg
-...
I create my data generator from my folder like this:
train_data_gen = image_generator.flow_from_directory(directory="path\\to\\dataset",
batch_size=100,
shuffle=True,
target_size=(100, 100), # Image H x W
classes=list(CLASS_NAMES)) # list of folder/class names ["class1", "class2", ...., "classX"]
Found 629 images belonging to 2 classes.
I've did a smaller dataset to test the pipeline. Only 629 images in 2 classes.
Now I can create a dummy model like this:
model = tf.keras.Sequential()
model.add(Dense(1, activation=activation, input_shape=(100, 100, 3))) # only 1 layer of 1 neuron
model.add(Dense(2)) # 2classes
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=['categorical_accuracy'])
Once compile I try to fit this dummy model:
STEPS_PER_EPOCH = np.ceil(image_count / batch_size) # 629 / 100
model.fit_generator(generator=train_data_gen , steps_per_epoch=STEPS_PER_EPOCH, epochs=2, verbose=1)
1/7 [===>..........................] - ETA: 2s - loss: 1.1921e-07 - categorical_accuracy: 0.9948
2/7 [=======>......................] - ETA: 1s - loss: 1.1921e-07 - categorical_accuracy: 0.5124
3/7 [===========>..................] - ETA: 0s - loss: 1.1921e-07 - categorical_accuracy: 0.3449
4/7 [================>.............] - ETA: 0s - loss: 1.1921e-07 - categorical_accuracy: 0.2662
5/7 [====================>.........] - ETA: 0s - loss: 1.1921e-07 - categorical_accuracy: 0.2130
6/7 [========================>.....] - ETA: 0s - loss: 1.1921e-07 - categorical_accuracy: 0.1808
2020-04-14 20:39:48.629203: W tensorflow/core/framework/op_kernel.cc:1610] Invalid argument: ValueError: generator yielded an element of shape (29, 100, 100, 3) where an element of shape (100, 100, 100, 3) was expected.
From what i understand, the last batch doesn't has the same shape has the previous batches. So it crashes. I've tried to specify a batch_input_shape.
model.add(Dense(1, activation=activation, batch_input_shape=(None, 100, 100, 3)))
I've found here that I should put None to not specify the number of elements in the batch so it can be dynamic. But no success.
Edit: From the comment I had 2 mistakes:
The output shape was bad. I missed the flatten layer in the model.
The previous link does work with the correction of the flatten layer
Missing some code, I actually feed the fit_generator with a tf.data.Dataset.from_generator but I gave here a image_generator.flow_from_directory.
Here is the final code:
train_data_gen = image_generator.flow_from_directory(directory="path\\to\\dataset",
batch_size=1000,
shuffle=True,
target_size=(100, 100),
classes=list(CLASS_NAMES))
train_dataset = tf.data.Dataset.from_generator(
lambda: train_data_gen,
output_types=(tf.float32, tf.float32),
output_shapes=([None, x, y, 3],
[None, len(CLASS_NAMES)]))
model = tf.keras.Sequential()
model.add(Flatten(batch_input_shape=(None, 100, 100, 3)))
model.add(Dense(1, activation=activation))
model.add(Dense(2))
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=['categorical_accuracy'])
STEPS_PER_EPOCH = np.ceil(image_count / batch_size) # 629 / 100
model.fit_generator(generator=train_data_gen , steps_per_epoch=STEPS_PER_EPOCH, epochs=2, verbose=1)
For the benefit of community here i am explaining, how to use image_generator in Tensorflow with input_shape (100, 100, 3) using dogs vs cats dataset
If we haven't choose right batch size there is a chance of model struck right after first epoch, hence i am starting my explanation with how to choose batch_size ?
We generally observe that batch size to be the power of 2, this is because of the effective work of optimized matrix operation libraries. This is further elaborated in this research paper.
Check out this blog which describes how to choose the right batch size while comparing the effects of different batch sizes on the accuracy of CIFAR-10 dataset.
Here is the end to end working code with outputs
import os
import numpy as np
from keras import layers
import pandas as pd
from tensorflow.keras.layers import Input, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D
from tensorflow.keras.layers import AveragePooling2D, MaxPooling2D, Dropout, GlobalMaxPooling2D, GlobalAveragePooling2D
from tensorflow.keras.models import Sequential
from tensorflow.keras import regularizers, optimizers
from tensorflow.keras.preprocessing import image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import keras.backend as K
K.set_image_data_format('channels_last')
train_dir = '/content/drive/My Drive/Dogs_Vs_Cats/train'
test_dir = '/content/drive/My Drive/Dogs_Vs_Cats/test'
img_width, img_height = 100, 100
input_shape = img_width, img_height, 3
train_samples = 2000
test_samples = 1000
epochs = 30
batch_size = 32
train_datagen = ImageDataGenerator(
rescale = 1. /255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(
rescale = 1. /255)
train_data = train_datagen.flow_from_directory(
train_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary')
test_data = test_datagen.flow_from_directory(
test_dir,
target_size = (img_width, img_height),
batch_size = batch_size,
class_mode = 'binary')
model = Sequential()
model.add(Conv2D(32, (7, 7), strides = (1, 1), input_shape = input_shape))
model.add(BatchNormalization(axis = 3))
model.add(Activation('relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (7, 7), strides = (1, 1)))
model.add(BatchNormalization(axis = 3))
model.add(Activation('relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.summary()
model.compile(loss = 'binary_crossentropy',
optimizer = 'rmsprop',
metrics = ['accuracy'])
model.fit_generator(
train_data,
steps_per_epoch = train_samples//batch_size,
epochs = epochs,
validation_data = test_data,
verbose = 1,
validation_steps = test_samples//batch_size)
Output:
Found 2000 images belonging to 2 classes.
Found 1000 images belonging to 2 classes.
Model: "sequential_5"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_8 (Conv2D) (None, 94, 94, 32) 4736
_________________________________________________________________
batch_normalization_8 (Batch (None, 94, 94, 32) 128
_________________________________________________________________
activation_8 (Activation) (None, 94, 94, 32) 0
_________________________________________________________________
max_pooling2d_8 (MaxPooling2 (None, 47, 47, 32) 0
_________________________________________________________________
conv2d_9 (Conv2D) (None, 41, 41, 64) 100416
_________________________________________________________________
batch_normalization_9 (Batch (None, 41, 41, 64) 256
_________________________________________________________________
activation_9 (Activation) (None, 41, 41, 64) 0
_________________________________________________________________
max_pooling2d_9 (MaxPooling2 (None, 20, 20, 64) 0
_________________________________________________________________
flatten_4 (Flatten) (None, 25600) 0
_________________________________________________________________
dense_11 (Dense) (None, 64) 1638464
_________________________________________________________________
dropout_4 (Dropout) (None, 64) 0
_________________________________________________________________
dense_12 (Dense) (None, 1) 65
=================================================================
Total params: 1,744,065
Trainable params: 1,743,873
Non-trainable params: 192
_________________________________________________________________
Epoch 1/30
62/62 [==============================] - 14s 225ms/step - loss: 1.8307 - accuracy: 0.4853 - val_loss: 0.6931 - val_accuracy: 0.5000
Epoch 2/30
62/62 [==============================] - 14s 226ms/step - loss: 0.7085 - accuracy: 0.4832 - val_loss: 0.6931 - val_accuracy: 0.5010
Epoch 3/30
62/62 [==============================] - 14s 218ms/step - loss: 0.6955 - accuracy: 0.5300 - val_loss: 0.6894 - val_accuracy: 0.5292
Epoch 4/30
62/62 [==============================] - 14s 221ms/step - loss: 0.6938 - accuracy: 0.5407 - val_loss: 0.7309 - val_accuracy: 0.5262
Epoch 5/30
62/62 [==============================] - 14s 218ms/step - loss: 0.6860 - accuracy: 0.5498 - val_loss: 0.6776 - val_accuracy: 0.5665
Epoch 6/30
62/62 [==============================] - 13s 216ms/step - loss: 0.7027 - accuracy: 0.5407 - val_loss: 0.6895 - val_accuracy: 0.5101
Epoch 7/30
62/62 [==============================] - 13s 216ms/step - loss: 0.6852 - accuracy: 0.5528 - val_loss: 0.6567 - val_accuracy: 0.5887
Epoch 8/30
62/62 [==============================] - 13s 217ms/step - loss: 0.6772 - accuracy: 0.5427 - val_loss: 0.6643 - val_accuracy: 0.5847
Epoch 9/30
62/62 [==============================] - 13s 217ms/step - loss: 0.6709 - accuracy: 0.5534 - val_loss: 0.6623 - val_accuracy: 0.5887
Epoch 10/30
62/62 [==============================] - 14s 219ms/step - loss: 0.6579 - accuracy: 0.5711 - val_loss: 0.6614 - val_accuracy: 0.6058
Epoch 11/30
62/62 [==============================] - 13s 218ms/step - loss: 0.6591 - accuracy: 0.5625 - val_loss: 0.6594 - val_accuracy: 0.5454
Epoch 12/30
62/62 [==============================] - 13s 216ms/step - loss: 0.6419 - accuracy: 0.5767 - val_loss: 1.1041 - val_accuracy: 0.5161
Epoch 13/30
62/62 [==============================] - 13s 215ms/step - loss: 0.6479 - accuracy: 0.5783 - val_loss: 0.6441 - val_accuracy: 0.5837
Epoch 14/30
62/62 [==============================] - 13s 216ms/step - loss: 0.6373 - accuracy: 0.5899 - val_loss: 0.6427 - val_accuracy: 0.6310
Epoch 15/30
62/62 [==============================] - 13s 215ms/step - loss: 0.6203 - accuracy: 0.6133 - val_loss: 0.7390 - val_accuracy: 0.6220
Epoch 16/30
62/62 [==============================] - 13s 217ms/step - loss: 0.6277 - accuracy: 0.6362 - val_loss: 0.6649 - val_accuracy: 0.5786
Epoch 17/30
62/62 [==============================] - 13s 215ms/step - loss: 0.6155 - accuracy: 0.6316 - val_loss: 0.9823 - val_accuracy: 0.5484
Epoch 18/30
62/62 [==============================] - 14s 222ms/step - loss: 0.6056 - accuracy: 0.6408 - val_loss: 0.6333 - val_accuracy: 0.6048
Epoch 19/30
62/62 [==============================] - 14s 218ms/step - loss: 0.6025 - accuracy: 0.6529 - val_loss: 0.6514 - val_accuracy: 0.6442
Epoch 20/30
62/62 [==============================] - 13s 215ms/step - loss: 0.6149 - accuracy: 0.6423 - val_loss: 0.6373 - val_accuracy: 0.6048
Epoch 21/30
62/62 [==============================] - 13s 215ms/step - loss: 0.6030 - accuracy: 0.6519 - val_loss: 0.6086 - val_accuracy: 0.6573
Epoch 22/30
62/62 [==============================] - 13s 217ms/step - loss: 0.5936 - accuracy: 0.6865 - val_loss: 1.0677 - val_accuracy: 0.5605
Epoch 23/30
62/62 [==============================] - 13s 214ms/step - loss: 0.5964 - accuracy: 0.6728 - val_loss: 0.7927 - val_accuracy: 0.5877
Epoch 24/30
62/62 [==============================] - 13s 215ms/step - loss: 0.5866 - accuracy: 0.6707 - val_loss: 0.6116 - val_accuracy: 0.6421
Epoch 25/30
62/62 [==============================] - 13s 214ms/step - loss: 0.5933 - accuracy: 0.6662 - val_loss: 0.8282 - val_accuracy: 0.6048
Epoch 26/30
62/62 [==============================] - 13s 214ms/step - loss: 0.5705 - accuracy: 0.6885 - val_loss: 0.5806 - val_accuracy: 0.6966
Epoch 27/30
62/62 [==============================] - 14s 218ms/step - loss: 0.5709 - accuracy: 0.7017 - val_loss: 1.2404 - val_accuracy: 0.5333
Epoch 28/30
62/62 [==============================] - 13s 216ms/step - loss: 0.5691 - accuracy: 0.7104 - val_loss: 0.6136 - val_accuracy: 0.6442
Epoch 29/30
62/62 [==============================] - 13s 215ms/step - loss: 0.5627 - accuracy: 0.7048 - val_loss: 0.6936 - val_accuracy: 0.6613
Epoch 30/30
62/62 [==============================] - 13s 214ms/step - loss: 0.5714 - accuracy: 0.6941 - val_loss: 0.5872 - val_accuracy: 0.6825

Add learning rate to history object of fit_generator with Tensorflow

I want to check how my optimizer is changing my learning rate. I am using tensorflow 1.15.
I run my model with fit_generator:
hist = model.fit_generator(dat, args.onthefly[0]//args.batch, args.epochs,
validation_data=val, validation_steps=args.onthefly[1]//args.batch,verbose=2,
use_multiprocessing=True, workers=56)
I choose the optimizer using the compile function:
model.compile(loss=loss,
optimizer=Nadam(lr=learning_rate),
metrics=['binary_accuracy']
)
How can I get the value of the learning rate at the end of each epoch?
You can do that using callbacks argument of model.fit_generator. Below is the code on how to implement it. Here I am incrementing learning rate by 0.01 for every epoch using tf.keras.callbacks.LearningRateScheduler and also displaying it at end of every epoch using tf.keras.callbacks.Callback.
Full Code -
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import backend as K
import os
import numpy as np
import matplotlib.pyplot as plt
_URL = 'https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip'
path_to_zip = tf.keras.utils.get_file('cats_and_dogs.zip', origin=_URL, extract=True)
PATH = os.path.join(os.path.dirname(path_to_zip), 'cats_and_dogs_filtered')
train_dir = os.path.join(PATH, 'train')
validation_dir = os.path.join(PATH, 'validation')
train_cats_dir = os.path.join(train_dir, 'cats') # directory with our training cat pictures
train_dogs_dir = os.path.join(train_dir, 'dogs') # directory with our training dog pictures
validation_cats_dir = os.path.join(validation_dir, 'cats') # directory with our validation cat pictures
validation_dogs_dir = os.path.join(validation_dir, 'dogs') # directory with our validation dog pictures
num_cats_tr = len(os.listdir(train_cats_dir))
num_dogs_tr = len(os.listdir(train_dogs_dir))
num_cats_val = len(os.listdir(validation_cats_dir))
num_dogs_val = len(os.listdir(validation_dogs_dir))
total_train = num_cats_tr + num_dogs_tr
total_val = num_cats_val + num_dogs_val
batch_size = 128
epochs = 5
IMG_HEIGHT = 150
IMG_WIDTH = 150
train_image_generator = ImageDataGenerator(rescale=1./255,brightness_range=[0.5,1.5]) # Generator for our training data
validation_image_generator = ImageDataGenerator(rescale=1./255,brightness_range=[0.5,1.5]) # Generator for our validation data
train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size,
directory=train_dir,
shuffle=True,
target_size=(IMG_HEIGHT, IMG_WIDTH),
class_mode='binary')
val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size,
directory=validation_dir,
target_size=(IMG_HEIGHT, IMG_WIDTH),
class_mode='binary')
model = Sequential([
Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH ,3)),
MaxPooling2D(),
Conv2D(32, 3, padding='same', activation='relu'),
MaxPooling2D(),
Conv2D(64, 3, padding='same', activation='relu'),
MaxPooling2D(),
Flatten(),
Dense(512, activation='relu'),
Dense(1)
])
lr = 0.01
adam = Adam(lr)
# Define the Required Callback Function
class printlearningrate(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
optimizer = self.model.optimizer
lr = K.eval(optimizer.lr)
Epoch_count = epoch + 1
print('\n', "Epoch:", Epoch_count, ', LR: {:.2f}'.format(lr))
printlr = printlearningrate()
def scheduler(epoch):
optimizer = model.optimizer
return K.eval(optimizer.lr + 0.01)
updatelr = tf.keras.callbacks.LearningRateScheduler(scheduler)
model.compile(optimizer=adam,
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=['accuracy'])
history = model.fit_generator(
train_data_gen,
steps_per_epoch=total_train // batch_size,
epochs=epochs,
validation_data=val_data_gen,
validation_steps=total_val // batch_size,
callbacks = [printlr,updatelr])
Output -
Found 2000 images belonging to 2 classes.
Found 1000 images belonging to 2 classes.
Epoch 1/5
15/15 [==============================] - ETA: 0s - loss: 40.9353 - accuracy: 0.5156
Epoch: 1 , LR: 0.02
15/15 [==============================] - 27s 2s/step - loss: 40.9353 - accuracy: 0.5156 - val_loss: 0.6938 - val_accuracy: 0.5067 - lr: 0.0200
Epoch 2/5
15/15 [==============================] - ETA: 0s - loss: 0.6933 - accuracy: 0.5021
Epoch: 2 , LR: 0.03
15/15 [==============================] - 27s 2s/step - loss: 0.6933 - accuracy: 0.5021 - val_loss: 0.6935 - val_accuracy: 0.4877 - lr: 0.0300
Epoch 3/5
15/15 [==============================] - ETA: 0s - loss: 0.6932 - accuracy: 0.4989
Epoch: 3 , LR: 0.04
15/15 [==============================] - 27s 2s/step - loss: 0.6932 - accuracy: 0.4989 - val_loss: 0.6933 - val_accuracy: 0.5056 - lr: 0.0400
Epoch 4/5
15/15 [==============================] - ETA: 0s - loss: 0.6932 - accuracy: 0.4947
Epoch: 4 , LR: 0.05
15/15 [==============================] - 27s 2s/step - loss: 0.6932 - accuracy: 0.4947 - val_loss: 0.6931 - val_accuracy: 0.4967 - lr: 0.0500
Epoch 5/5
15/15 [==============================] - ETA: 0s - loss: 0.6935 - accuracy: 0.5091
Epoch: 5 , LR: 0.06
15/15 [==============================] - 27s 2s/step - loss: 0.6935 - accuracy: 0.5091 - val_loss: 0.6935 - val_accuracy: 0.4978 - lr: 0.0600