Outputting sequence in TensorFlow RNN - tensorflow

I created a simple TensorFlow program that tries to predict the next character using the previous 3 characters in a body of text.
A single input could look like this:
np.array(['t','h','i'])
with the target about being
np.array(['s'])
I'm trying to expand this to output the next say 4 character rather than just the next character. To do this I tried feeding in a longer array to y
np.array(['s','','i'])
In addition to changing the y to
y = tf.placeholder(dtype=tf.int32, shape=[None, n_steps])
however, this yields the error:
Rank mismatch: Rank of labels (received 2) should equal rank of logits
minus 1 (received 2).
Here's the full code
embedding_size=40
n_neurons = 200
n_output = vocab_size
learning_rate = 0.001
with tf.Graph().as_default():
x = tf.placeholder(dtype=tf.int32, shape=[None, n_steps])
y = tf.placeholder(dtype=tf.int32, shape=[None])
seq_length = tf.placeholder(tf.int32, [None])
# Let's set up the embedding converting words to vectors
embeddings = tf.Variable(tf.random_uniform(shape=[vocab_size, embedding_size], minval=-1, maxval=1))
train_input = tf.nn.embedding_lookup(embeddings, x)
basic_cell = tf.nn.rnn_cell.GRUCell(num_units=n_neurons)
outputs, states = tf.nn.dynamic_rnn(basic_cell, train_input, sequence_length=seq_length, dtype=tf.float32)
logits = tf.layers.dense(states, units=vocab_size, activation=None)
predictions = tf.nn.softmax(logits)
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=y,
logits=logits)
loss = tf.reduce_mean(xentropy)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for r in range(1000):
x_batch, y_batch, seq_length_batch = input_fn()
feed_dict = {x: x_batch, y: y_batch, seq_length: seq_length_batch}
_, loss_out = sess.run([training_op, loss], feed_dict=feed_dict)
if r % 1000 == 0:
print("loss_out", loss_out)
sample_text = "for th"
sample_text_ids = np.expand_dims(np.array([w_to_id[c] for c in sample_text]+[0, 0], dtype=np.int32), 0)
prediction_out = sess.run(predictions, feed_dict={x: sample_text_ids, seq_length: np.array([len(sample_text)])})
print("Result:", id_to_w[np.argmax(prediction_out)])

In case of many-to-many RNN, you should use tf.contrib.seq2seq.sequence_loss to calculate per time step loss. Your code should look like this:
...
logits = tf.layers.dense(states, units=vocab_size, activation=None)
weights = tf.sequence_mask(seq_length, n_steps)
xentropy = tf.contrib.seq2seq.sequence_loss(logits, y, weights)
...
See here for more details on tf.contrib.seq2seq.sequence_loss.

Related

Error: Tensorflow BRNN logits and labels must be same size

I have an error like this:
InvalidArgumentError (see above for traceback): logits and labels must
be same size: logits_size=[10,9] labels_size=[7040,9] [[Node:
SoftmaxCrossEntropyWithLogits =
SoftmaxCrossEntropyWithLogits[T=DT_FLOAT,
_device="/job:localhost/replica:0/task:0/gpu:0"](Reshape, Reshape_1)]]
But I can't find the tensor which occurs this error.... I think it is appeared by size mismatching...
My Input size is batch_size * n_steps * n_input
so, It will be 10*704*100, And I want to make the output
batch_size * n_steps * n_classes => It will by 10*700*9, by Bidirectional RNN
How should I change this code to fix the error?
batch_size means the number of datas like this:
data 1 : ABCABCABCAAADDD...
...
data 10 : ABCCCCABCDBBAA...
And
n_step means the length of each data ( The data was padded by 'O' to fix the length of each data) : 704
And
n_input means the data how to express the each alphabet in each data like this:
A - [1, 2, 1, -1, ..., -1]
And the output of the learning should be like this:
output of data 1 : XYZYXYZYYXY ...
...
output of data 10 : ZXYYRZYZZ ...
the each alphabet of output was effected by the surrounding and sequence of alphabet of input.
learning_rate = 0.001
training_iters = 100000
batch_size = 10
display_step = 10
# Network Parameters
n_input = 100
n_steps = 704 # timesteps
n_hidden = 50 # hidden layer num of features
n_classes = 9
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_steps, n_classes])
weights = {
'out': tf.Variable(tf.random_normal([2*n_hidden, n_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([n_classes]))
}
def BiRNN(x, weights, biases):
x = tf.unstack(tf.transpose(x, perm=[1, 0, 2]))
# Forward direction cell
lstm_fw_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Backward direction cell
lstm_bw_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Get lstm cell output
try:
outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
except Exception: # Old TensorFlow version only returns outputs not states
outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
pred = BiRNN(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
while step * batch_size < training_iters:
batch_x, batch_y = next_batch(batch_size, r_big_d, y_r_big_d)
#batch_x = batch_x.reshape((batch_size, n_steps, n_input))
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
"{:.6f}".format(loss) + ", Training Accuracy= " + \
"{:.5f}".format(acc))
step += 1
print("Optimization Finished!")
test_x, test_y = next_batch(batch_size, v_big_d, y_v_big_d)
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={x: test_x, y: test_y}))
The first return value of static_bidirectional_rnn is a list of tensors - one for each rnn step. By using only the last one in your tf.matmul you're losing all the rest. Instead, stack them into a single tensor of the appropriate shape, reshape for the matmul then shape back.
outputs = tf.stack(outputs, axis=1)
outputs = tf.reshape(outputs, (batch_size*n_steps, n_hidden))
outputs = tf.matmul(outputs, weights['out']) + biases['out']
outputs = tf.reshape(outputs, (batch_size, n_steps, n_classes))
Alternatively, you could use tf.einsum:
outputs = tf.stack(outputs, axis=1)
outputs = tf.einsum('ijk,kl->ijl', outputs, weights['out']) + biases['out']

Output sequence of RNN in TensorFlow

I have a simple script that takes in a sequence of words, converts them to embeddings and tries to predict the next word in the sentence. What I really want is to output the next 140 words. I have been able to achieve this by running predict 140 subsequent times each time with the latest character appended to the list but this takes a very long time.
Is there a clever way to return a sequence instead of a word from an RNN?
with tf.name_scope("placeholders"):
x = tf.placeholder(dtype=tf.int32, shape=[None, n_steps])
y = tf.placeholder(dtype=tf.int32, shape=[None])
seq_length = tf.placeholder(tf.int32, [None])
# Let's set up the embedding converting words to vectors
with tf.name_scope("embeddings"):
embeddings = tf.Variable(tf.random_uniform(shape=[vocab_size, embedding_size], minval=-1, maxval=1))
train_input = tf.nn.embedding_lookup(embeddings, x)
if is_training:
train_input = tf.layers.batch_normalization(train_input)
with tf.name_scope("model"):
#consider if we can
#1: make stateful model
#2: predict next N words instead of just the next
single_cell = tf.contrib.rnn.BasicLSTMCell(num_units=n_hidden)
lstm_cells = [tf.contrib.rnn.BasicLSTMCell(num_units=n_hidden)
for _ in range(n_units)]
#if is_training:
# lstm_cells = [tf.contrib.rnn.DropoutWrapper(cell, input_keep_prob=0.2)
# for cell in lstm_cells]
multi_cell = tf.contrib.rnn.MultiRNNCell(lstm_cells)
outputs, states = tf.nn.dynamic_rnn(multi_cell, train_input, dtype=tf.float32)
top_layer_h_state = states[-1][1]
hidden1 = tf.layers.dense(top_layer_h_state, units=n_hidden, activation=tf.nn.relu)
dropout_1 = tf.layers.dropout(hidden1, rate=0.1, training=is_training)
logits = tf.layers.dense(dropout_1, units=vocab_size, activation=None)
predictions = tf.nn.softmax(logits)
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=y,
logits=logits)
loss = tf.reduce_mean(xentropy)

Illegal argument error: logits and labels must be same size

I am getting an error when calculating the cost function using softmax. It says that the shape of my logits and labels are not match
InvalidArgumentError (see above for traceback): logits and labels must be same size: logits_size=[1000,2] labels_size=[1,1000]
[[Node: SoftmaxCrossEntropyWithLogits = SoftmaxCrossEntropyWithLogits[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Reshape, Reshape_1)]]
Even if I do reshape or transpose the shape cannot match as logits is [1000,2] size and labels is [1000,1]. How do I tackle this issue?
n_nodes_hl1 = 250
n_nodes_hl2 = 250
n_classes = 2
batch_size = 1000
with open("xdf.pickle", 'rb') as f:
features = pickle.load(f)
with open("ydf.pickle", 'rb') as f:
labels = pickle.load(f)
def neural_network_model(data, feature_count):
hidden_layer_1 = {'weights': tf.Variable(tf.random_normal([feature_count, n_nodes_hl1])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_layer_2 = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes])), }
l1 = tf.add(tf.matmul(data, hidden_layer_1['weights']), hidden_layer_1['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_layer_2['weights']), hidden_layer_2['biases'])
l2 = tf.nn.relu(l2)
output = tf.matmul(l2, output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x, y, features, labels):
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2)
prediction = neural_network_model(x, len(features.columns))
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 1
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
epoch_loss = 0
for i in range(int(len(X_train) / batch_size)):
epoch_x = X_train[i*batch_size: min((i + 1)*batch_size, len(X_train))]
epoch_y = y_train[i*batch_size: min((i + 1)*batch_size, len(y_train))]
i, c = sess.run([optimizer, cost], feed_dict = {x:epoch_x, y:epoch_y})
epoch_loss += c
print('Epoch', epoch, ' completed out of ', hm_epochs, ' loss: ', epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy: ', accuracy.eval({x: X_test, y: y_test}))
x = tf.placeholder('float', [None, len(features.columns)])
y = tf.placeholder('float')
train_neural_network(x, y, features, labels)
Since I do not know what data you have, I can only guess. Your network has n_classes output neurons (2 in your case), but I assume that your labels are binary (0 or 1). You will either have to reduce the number of output neurons to 1 (this should work since you only have two classes), or convert your labels into one-hot labels ([1,0] for a label 0 and [0,1] for a label 1).
You could also try using tf.nn.sparse_softmax_cross_entropy_with_logits(), maybe it will work, so that you don't have to change the rest of the network...

LSTM model error is percent of one output class

I'm having a rough time trying to figure out what's wrong with my LSTM model. I have 11 inputs, and 2 output classes (one-hot encoded) and very quickly, like within 1 batch or so, the error just goes to the % of one of the output classes and stays there.
I tried printing weights and biases, but they seem to all be full of NaN.
If i decrease the learning rate, or mess around with layers/units, I can get it to arrive at the % of one class error slowly, but it seems to always get to that point.
Here's the code:
num_units = 30
num_layers = 50
dropout_rate = 0.80
learning_rate=0.0001
batch_size = 180
epoch = 1
input_classes = len(train_input[0])
output_classes = len(train_output[0])
data = tf.placeholder(tf.float32, [None, input_classes, 1]) #Number of examples, number of input, dimension of each input
target = tf.placeholder(tf.float32, [None, output_classes]) #one-hot encoded: [1,0] = bad, [0,1] = good
dropout = tf.placeholder(tf.float32)
cell = tf.contrib.rnn.LSTMCell(num_units, state_is_tuple=True)
cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=dropout)
cell = tf.contrib.rnn.MultiRNNCell([cell] * num_layers, state_is_tuple=True)
#Input shape [batch_size, max_time, depth], output shape: [batch_size, max_time, cell.output_size]
val, _ = tf.nn.dynamic_rnn(cell, data, dtype=tf.float32)
val = tf.transpose(val, [1, 0, 2]) #reshapes it to [sequence_size, batch_size, depth]
#get last entry as it includes previous results
last = tf.gather(val, int(val.get_shape()[0]) - 1)
weight = tf.get_variable("W", shape=[num_units, output_classes], initializer=tf.contrib.layers.xavier_initializer())
bias = tf.get_variable("B", shape=[output_classes], initializer=tf.contrib.layers.xavier_initializer())
logits = tf.matmul(last, weight) + bias
prediction = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=target)
prediction = tf.clip_by_value(prediction, 1e-10,100.0)
cost = tf.reduce_mean(prediction)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
minimize = optimizer.minimize(cost)
mistakes = tf.not_equal(tf.argmax(target, 1), tf.argmax(logits, 1))
error = tf.reduce_mean(tf.cast(mistakes, tf.float32))
init_op = tf.global_variables_initializer()
saver = tf.train.Saver()
sess = tf.Session()
sess.run(init_op)
no_of_batches = int((len(train_input)) / batch_size)
for i in range(epoch):
ptr = 0
for j in range(no_of_batches):
inp, out = train_input[ptr:ptr+batch_size], train_output[ptr:ptr+batch_size]
ptr+=batch_size
sess.run(minimize,{data: inp, target: out, dropout: dropout_rate })
sess.close()
Since you have one hot encoding use sparse_softmax_cross_entropy_with_logits instead of tf.nn.softmax_cross_entropy_with_logits.
Refer to this stackoverflow answer to understand the difference of two functions.
1

How to write denoising autoencoder as RNN with tensorflow

I want to adapt this Recurrent Neural Network in Tensorflow (from this tutorial
https://github.com/aymericdamien/TensorFlow-Examples/
and then the RNN program)
), so that it will be a denoising autoencoder.
I have 5 time steps, and at each time, the noiseless target is sampled from sin(x), and the noisy input is sin(x)+ Gaussian error.
Now my problem is that the RNN from the example gives me 1 output value for each sequence of inputs, but I want an output for each time step ( I want 5 outputs, not 1)
How do I do this? I suspect it may be a matter of redefining the weights and biases, but how?
Here is the code. Many thanks for your help,
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
import numpy as np
# Parameters
learning_rate = 0.0005
training_iters = 1000
batch_size = 3
display_step = 100
# Network Parameters
n_input = 2
n_output = 2
n_steps = 5 # timesteps
n_hidden = 40 # hidden layer num of features
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_steps, n_input])
# Define weights
weights = {
'out': tf.Variable(tf.random_normal([n_hidden, n_output]))
}
biases = {
'out': tf.Variable(tf.random_normal([ n_output]))
}
# length of time series to be sampled
N = 1000000
dim_input = 2
x1 = np.zeros(N)
x2 = np.zeros(N)
y1 = np.zeros(N)
y2 = np.zeros(N)
# generate data
for i in range(0,N):
# clean
y1[i] = np.math.sin(i)
y2[i] = np.math.cos(i)
# noisy
x1[i] = y1[i]+np.random.normal(loc=0.0, scale=0.05)
x2[i] = y2[i]+np.random.normal(loc=0.0, scale=0.05)
def next_batch():
batch = np.empty([batch_size,n_steps,dim_input])
batch_y = np.empty([batch_size,n_steps,dim_input])
# for plotting purposes only
inits = np.empty([batch_size], dtype=int)
for b in range(0,batch_size):
# the first one of the batch
inits[b] = int(np.round(np.random.uniform(low=0,high=N-n_steps- 1)))
init = inits[b]
for i in range(0,n_steps):
# noisy input
batch[b,i,0] = x1[init + i]
batch[b,i,1] = x2[init + i]
# target (no noise)"
batch_y[b,i,0] = y1[init+i]
batch_y[b,i,1] = y2[init+i]
return(batch,batch_y,inits)
def RNN(x, weights, biases):
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)
x = tf.split(0, n_steps, x)
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
pred = RNN(x, weights, biases)
# Define loss and optimizer
# SSE, there must be an easier way to do this
def get_cost(prediction,truth):
z = 0
for i in range(0,batch_size):
z = z + np.square(np.add(prediction[i,:], np.multiply(-1,truth[i,:])))
z = np.add(z[0],z[1])
z = np.sum(z)
return(z)
cost = get_cost(pred,y)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).
minimize(cost)
# Evaluate model
accuracy = cost
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
print('step '+ str(step))
batch_x, batch_y, inits = next_batch()
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print(loss)
step += 1
print("Optimization Finished!")
If I run this, I get this error message:
ValueError: Shape (?, 5, 2) must have rank 2. This seems fair enough, because the target is 5 steps long, and the output only 1. But how do I fix that?
Many thanks.
import tensorflow as tf
from tensorflow.python.ops import rnn, rnn_cell
import numpy as np
import matplotlib.pyplot as plt
## Denoising autoencoder.
import numpy as np
count = 0
# length of time series to be sampled
N = 10000
x1 = np.zeros(N)
x2 = np.zeros(N)
y1 = np.zeros(N)
y2 = np.zeros(N)
batch_size = 30
learning_rate = 0.0005
training_iters = 300000
display_step = 100
# Network Parameters
n_input = 2
n_output = 2
n_steps = 15 # timesteps
n_hidden = 75 # hidden layer num of
# generate data
for i in range(0,N):
# clean
y1[i] = np.math.sin(i)
y2[i] = np.math.cos(i)
# noisy
x1[i] = y1[i]+np.random.normal(loc=0.0, scale=0.1)
x2[i] = y2[i]+np.random.normal(loc=0.0, scale=0.1)
def next_batch():
batch = np.empty([batch_size,n_steps,n_input])
batch_y = np.empty([batch_size,n_steps,n_input])
# for plotting purposes only
inits = np.empty([batch_size], dtype=int)
for b in range(0,batch_size):
# the first one of the batch
inits[b] = int(np.round(np.random.uniform(low=0,high=N-n_steps-1)))
init = inits[b]
for i in range(0,n_steps):
# noisy input
batch[b,i,0] = x1[init + i]
batch[b,i,1] = x2[init + i]
# target (no noise)"
batch_y[b,i,0] = y1[init+i]
batch_y[b,i,1] = y2[init+i]
return(batch,batch_y,inits)
# Parameters
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_steps, n_output])
N_train = N - 500
def RNN(x):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Required shape: 'n_steps' tensors list of shape (batch_size, n_input)
# Permuting batch_size and n_steps
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)
x = tf.split(0, n_steps, x)
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.LSTMCell(num_units = n_hidden, forget_bias=1.0, num_proj=2)
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
return outputs
print(x)
pred = RNN(x)
# Define loss and optimizer
def get_cost(prediction,truth):
#print('pred' + str(prediction))
# SSE. there must be an easier way than this:
z = 0
for step in range(0,n_steps):
for b in range(0,batch_size):
for y_dim in range(0,2):
d1 = prediction[step][b,y_dim]
d2 = truth[b,step,y_dim]
diff= (d1 - d2 )
z = z + diff * diff
return(z)
cost = get_cost(pred,y)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
# Initializing the variables
init = tf.initialize_all_variables()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
#print('step '+ str(step))
batch_x, batch_y, inits = next_batch()
# Reshape data to get 28 seq of 28 elements
#batch_x = batch_x.reshape((batch_size, n_steps, n_input))
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
if step % display_step == 0:
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print(str(step) + ':' + str(loss))
step += 1
print("Optimization Finished!")
batch_size = 1
test_data, test_label, inits = next_batch()
#print "Testing Accuracy:", \
#sess.run(accuracy, feed_dict={x: test_data, y: test_label})
p2 = sess.run(pred, feed_dict={x: test_data, y: test_label})
#print('---inits---')
#print(inits)
print('---batch---')
print(test_data)
print('---truth---')
print(test_label)
print('---pred---')
print(p2)
c_final = get_cost(p2, test_label)
print(c_final)
First, we generate some data: a 2-dimensional series of sin(i) and cos(i), with i running from 1 to N. This gives us the variable y. Then we add some Normal noise to this series, and that's x. Then, we train a Recurrent Neural Net to create the clean output from the noisy input. In other words, we train the net such that it will output [cos(i),sin(i)] from input [cos(i)+e1,sin(i)+e2) ]. This is a plain vanilla denoising autoencoder, except that the data has a time element. Now you can feed new data into the neural net, and it will hopefully remove the noise.