Variable init in Go - variables

I see following code (I simplified it a bit).
func getEndpoints(db *sqlx.DB) s.Endpoints {
var endpoints s.Endpoints
{
repository := acl.NewRepository(db)
service := stat.NewService(repository)
endpoints = s.Endpoints{
GetEndpoint: s.MakeEndpoint(service),
}
}
return endpoints
}
If I understand this code correctly, code inside var endpoints s.Endpoints{...} is executed line by line and endpoints = s.Endpoints ... line initialises var endpoints variable declared above.
I suppose that it's correct to rewrite it like this (correct me if I'm wrong):
func getEndpoints(db *sqlx.DB) s.Endpoints {
repository := acl.NewRepository(db)
service := stat.NewService(repository)
endpoints := s.Endpoints{
GetEndpoint: s.MakeEndpoint(service),
}
return endpoints
}
So can somebody explain me why initialisation is written inside var endpoints s.Endpoints{...}. Is there any idea to do it like this? Am I missing something?

Adding a new block will create a new variable scope, and variables declared in that block will not be available outside of it:
var endpoints s.Endpoints
{
repository := acl.NewRepository(db)
service := stat.NewService(repository)
endpoints = s.Endpoints{
GetEndpoint: s.MakeEndpoint(service),
}
}
// service and repository variables are not defined here!
In your specific simplified example it makes little sense, but if you have other blocks with the same variables it makes more sense. For example:
var endpoints s.Endpoints
{
repository := acl.NewRepository(db)
service := stat.NewService(repository)
endpoints = s.Endpoints{
GetEndpoint: s.MakeEndpoint(service),
}
}
// Get another repository
{
repository := otherRepo.NewRepository(db)
repository.DoSomething()
}
Some people consider this "good hygiene". Personally, I don't think it's worth the decrease in readability.

They are equivalent.
The {...} block has nothing to do with the variable declaration with the var keyword. It just happens to be written one after the other.
The {...} is a simple block, nothing else. The var declaration does not require that block, and even if there is one, it is not related to the variable declaration. You can insert a block wherever you would insert a statement.
The rare case when an explicit block is used (when there isn't required one) is to group statements, and to control the scope of the variables and other identifiers declared inside them, because the scope of the variables end at the end of the innermost containing block (Spec: Declarations and Scope).

Related

How to make an api call faster in Golang?

I am trying to upload bunch of files using the company's api to the storage service they provide. (basically to my account). I have got lots of files like 40-50 or something.
I got the full path of the files and utilize the os.Open, so that, I can pass the io.Reader. I did try to use client.Files.Upload() without goroutines but it took so much time to upload them and decided to use goroutines. Here the implementation that I tried. When I run the program it just uploads one file which is the one that has the lowest size or something that it waits for a long time. What is wrong with it? Is it not like every time for loops run it creates a goroutine continue its cycle and creates for every file? How to make it as fast as possible with goroutines?
var filePaths []string
var wg sync.WaitGroup
// fills the string of slice with fullpath of files.
func fill() {
filepath.Walk(rootpath, func(path string, info os.FileInfo, err error) error {
if !info.IsDir() {
filePaths = append(filePaths, path)
}
if err != nil {
fmt.Println("ERROR:", err)
}
return nil
})
}
func main() {
fill()
tokenSource := oauth2.StaticTokenSource(&oauth2.Token{AccessToken: token})
oauthClient := oauth2.NewClient(context.TODO(), tokenSource)
client := putio.NewClient(oauthClient)
for _, path := range filePaths {
wg.Add(1)
go func() {
defer wg.Done()
f, err := os.Open(path)
if err != nil {
log.Println("err:OPEN", err)
}
upload, err := client.Files.Upload(context.TODO(), f, path, 0)
if err != nil {
log.Println("error uploading file:", err)
}
fmt.Println(upload)
}()
}
wg.Wait()
}
Consider a worker pool pattern like this: https://go.dev/play/p/p6SErj3L6Yc
In this example application, I've taken out the API call and just list the file names. That makes it work on the playground.
A fixed number of worker goroutines are started. We'll use a channel to distribute their work and we'll close the channel to communicate the end of the work. This number could be 1 or 1000 routines, or more. The number should be chosen based on how many concurrent API operations your putio API can reasonably be expected to support.
paths is a chan string we'll use for this purpose.
workers range over paths channel to receive new file paths to upload
package main
import (
"fmt"
"os"
"path/filepath"
"sync"
)
func main() {
paths := make(chan string)
var wg = new(sync.WaitGroup)
for i := 0; i < 10; i++ {
wg.Add(1)
go worker(paths, wg)
}
if err := filepath.Walk("/usr", func(path string, info os.FileInfo, err error) error {
if err != nil {
return fmt.Errorf("Failed to walk directory: %T %w", err, err)
}
if info.IsDir() {
return nil
}
paths <- path
return nil
}); err != nil {
panic(fmt.Errorf("failed Walk: %w", err))
}
close(paths)
wg.Wait()
}
func worker(paths <-chan string, wg *sync.WaitGroup) {
defer wg.Done()
for path := range paths {
// do upload.
fmt.Println(path)
}
}
This pattern can handle an indefinitely large amount of files without having to load the entire list in memory before processing it. As you can see, this doesn't make the code more complicated - actually, it's simpler.
When I run the program it just uploads one file which is the one
Function literals inherit the scope in which they were defined. This is why our code only listed one path - the path variable scope in the for loop was shared to each go routine, so when that variable changed, all routines picked up the change.
Avoid function literals unless you actually want to inherit scope. Functions defined at the global scope don't inherit any scope, and you must pass all relevant variables to those functions instead. This is a good thing - it makes the functions more straightforward to understand and makes variable "ownership" transitions more explicit.
An appropriate case to use a function literal could be for the os.Walk parameter; its arguments are defined by os.Walk so definition scope is one way to access other values - such as paths channel, in our case.
Speaking of scope, global variables should be avoided unless their scope of usage is truly global. Prefer passing variables between functions to sharing global variables. Again, this makes variable ownership explicit and makes it easy to understand which functions do and don't access which variables. Neither your wait group nor your filePaths have any cause to be global.
f, err := os.Open(path)
Don't forget to close any files you open. When you're dealing with 40 or 50 files, letting all those open file handles pile up until the program ends isn't so bad, but it's a time bomb in your program that will go off when the number of files exceeds the ulimit of allowed open files. Because the function execution greatly exceeds the part where the file needs to be open, defer doesn't make sense in this case. I would use an explicit f.Close() after uploading the file.

Apply a proxy to a variable (not an attribute) using traits

This question is a near-duplicate of Apply a proxy using traits. However, that question dealt with applying a proxy to an Attribute, and I would like to do the same thing for a Variable. From Jonathan's answer, I understand that I
need to arrange for the Proxy to be bound into the attribute, so that there's a Proxy there rather than a Scalar container that is usually created by class initialization logic.
However, I can't seem to bind successfully to a Variable:D, even at compile time. (Including with nqp::bind). I'd greatly appreciate any pointers in the correct direction.
(Ideally, I'd like to support using the variable/trait with assignment syntax. In a perfect world, I'd have syntax like:
my $thing is custom-proxy = 42;
And the result of that would be that $thing is containerized inside the Proxy, but not in a Scalar. But if that's not possible, I'd settle for getting it working with binding via :=.
[EDIT: building on the accepted answer below, it is possible to mostly do this with the following code:
multi trait_mod:<is>(Variable \v, :$tom) {
v.block.add_phaser(
'ENTER',
v.willdo(<-> $_ {
$_ = Proxy.new:
STORE => -> $, $v { say "store $v" },
FETCH => { say "fetch!"; 42}
}, 1))
}
This works for variables that are not initialized to a different value or for state variables on calls to the function other than the first.
You can always bind.
my $actual-thing = 42;
my $thing := Proxy.new(
FETCH => anon method fetch () {
say 'fetch';
$actual-thing
},
STORE => anon method store ($new) {
say 'store ',$new;
$actual-thing = $new
}
);
say $thing;
$thing = 5;
say $thing;
Which currently results in the following.
fetch
fetch
fetch
fetch
fetch
fetch
fetch
42
store 5
fetch
fetch
fetch
fetch
fetch
fetch
fetch
5
(The repeated FETCH calls are a known limitation.)
If you wanted to have syntax like
my $thing is custom-proxy = 42;
You would need to start with
multi trait_mod:<is> ( Variable:D \var, :$custom-proxy! ){
…
}
The problem is that currently doing it this way requires a lot of deep Rakudo/nqp knowledge that I do not possess.
For example the code behind my $var is default('value') looks a bit like this:
multi sub trait_mod:<is>(Variable:D $v, Mu :$default!) {
my $var := $v.var;
my $what := $var.VAR.WHAT;
my $descriptor;
{
$descriptor := nqp::getattr($var, $what.^mixin_base, '$!descriptor');
CATCH {
my $native = $v.native($what);
…
}
}
…
$descriptor.set_default(nqp::decont($default));
# make sure we start with the default if a scalar
$var = $default if nqp::istype($what, Scalar);
}
Why does that have $what.^mixin_base?
I have no idea.
Why isn't $!descriptor accessible something like $v.var.descriptor?
I have no idea.
How do we change $v.var.VAR from a Scalar to a Proxy?
I have no idea.
Is that last one doable? (From within a trait_mod:<is>)
I am fairly certain that the answer is yes.
My 2d[1]:
I'd settle for getting it working with binding via :=.
sub custom-proxy is rw { Proxy.new: FETCH => { 42 }, STORE => { ... } }
my $variable := custom-proxy;
say $variable; # 42
In a perfect world, I'd have syntax like:
my $thing is custom-proxy = 42;
Aiui, that's #Larry's intent.
But, as you presumably know, if a type (eg role custom-proxy { ... }) is applied using an is trait to a scalar variable (eg my $variable is custom-proxy) then the compiler emits a compile time error message (is trait on $-sigil variable not yet implemented).
I can't seem to bind successfully to a Variable:D, even at compile time
First, let's clarify what a Variable is, and what you would need to successfully bind to:
multi trait_mod:<is>(Variable \var, :$foo!) { say var.var.VAR.WHAT } # (Scalar)
my $variable is foo;
You might think you could bind to var. But the compiler is passing an lvalue, so you're not going to be able to alter it.
You might think you could bind to var.var, which is an attribute of a Variable. (I explain what a Variable is, and its var attribute, and why I had to write "varvarVAR!" in the above code, here.)
The SO you linked shows how to alter the value bound to an attribute in some object:
$a.set_build: -> \SELF, | {
$a.set_value: SELF, Proxy.new:
STORE => -> $, $val { say "store $val" },
FETCH => { say "fetch!"; 42 }
}
So perhaps you could use that approach to alter the .var attribute of a Variable?
Unfortunately, "setting build logic" is used to "bind the attribute ... at each object creation", (hence "you'll be overriding any initial default value").
So I don't think this technique is going to help in this case because the Variable, and hence its .var attribute, has presumably already been built by the time the Variable is passed to the is trait.
In summary, while a trait is called at compile-time, I think it's called too late because the var attribute has already been permanently bound.
My guess is that altering Raku(do) so that the Variable's .var attribute becomes writable, or using metaprogramming to dive underneath Variable's public API to force through a change, would be beyond fraught, unreasonably complicating the compiler's variable handling code and/or swapping out codegen optimization logic for pessimization logic.
This may be behind #Larry's speculation that a more controlled is type on scalar variables will one day be implemented.
Footnotes
[1] My two (pennies | dogecoin).

Golang Switch variable scope

I'm trying to figure out simple switch in Golang and I'm stuck with variable scope.
var body string
var errs error
req := gorequest.New()
var resp gorequest.Response
switch verb {
case 0:
resp, body, errs := req.Get(suburl).
Set("X-Auth-Token", d.Token).
Set("Content-type", "application/json").
End()
}
if errs != nil {
return &ConnResponse{resp.StatusCode, body, fmt.Errorf("%s", errs)}
}
I've declared resp, body, errs and req before switch and I've thought that they will be available after the switch body.
What compiler returns is below errors (from the case declaration)
# command-line-arguments
./conn.go:135:3: resp declared and not used
./conn.go:135:9: body declared and not used
./conn.go:135:15: errs declared and not used
So I'm curious is the variable scope inside switch body is somehow different from declared in function? How would this piece of code look like to be able to get access to data after switch body.
Your issue is in this line:
resp, body, errs := req.Get(suburl)
The short variable declaration operator := creates new variables and assigns values to them. These new variables are said to "shadow" the variables you created in the outer scope, because they have the same names and thus they "hide" the outer-scoped variables from within that scope. To fix the issue, just assign the values to your existing variables from the outer scope, instead of creating new ones:
resp, body, errs = req.Get(suburl)
Note the use here of assignment = instead of short declaration :=.

What is this anti-pattern called (using parent scopes to pass state)?

I'm trying to describe to a colleague issues I have with how their code is structured, and I'm looking for the name of the anti-pattern he's implemented (bonus points for the software principals it violates). I'm using JS to demonstrate, but this isn't JS specific.
function x() {
var a, b, c;
var doWork = function(){
a = 1;
b = 2;
addAB();
return c;
};
var addAB = function(){
c = a + b;
};
var result = doWork();
}
He's passing information into and out of functions/methods using the parent scope. It makes understanding the code very difficult.
I don't know that there is an official name for it but, the issue you are describing is creating functions with side effects.
You don't want to have any function that modifies anything outside of its own scope. Having a shared member (in this case a, b, & c) that can be modified by any other function can lead to unknown and/or inconsistent states and/or behaviors.
I believe that your concerns aren't applicable to JavaScript (and many other programming languages). Your code and your team mates are using closures:
Closures are functions that refer to independent (free) variables
(variables that are used locally, but defined in an enclosing scope).
In other words, these functions 'remember' the environment in which
they were created.
In JavaScript and many other languages which can create closures is very common to access parent scope's references and it provides more power to code rather than pain. Obviously, a wrongly used tool produces pain, but I should analyze your mates' code to be sure that it's not that you're just against closures.
In summary, closures aren't an anti-pattern. They're a language feature.
For example, your code could be an actual use case like DOM event handling:
var text = "";
document.getElementById("someButton").addEventListener(function() {
text = document.getElementById("someInput").value;
});
And some developers implement something like private functions defining them inside a constructor function:
function A() {
this.text = "";
var that = this;
function fillText() {
that.text = "hello world";
}
fillText();
}
var a = new A();
console.log(a.text); // "hello world"

Writing Custom Rule for Android-Lint

Q (tldr;): How do I use the JavaScanner in android-lint to check if a particular function call with a specific string as a parameter has been surrounded by a try/catch block.
Details: I have completed the android-lint tutorials on the official site and have gone through the source of the existing lint-checks. However, I can't seem to grasp the workflow for this AST-based parsing of JavaScanner. What I'm trying to achieve is to catch a function that sets a specific property and surround it with a try/catch block. For example:
MyPropertySettings.set("SOME_PROPERTY", "SOME_VAL");
should not trigger the lint rule but:
MyPropertySettings.set("SOME_SENSITIVE_PROPERTY", "SOME_VAL");
should because it's not surrounded by a try/catch block with SetPropertyException. I don't want to introduce the try/catch to the function itself because it only throws the exception in extremely rare cases (and the internals of the function are based on some reflection mojo).
For this question, even a workflow/hint would be fine. If I can get the first few steps, I might be able to grasp it better.
Update:
After some more study, I have found that I need to set the set function above in getApplicableMethodNames() and then, somehow read the property of that function to decide if the check applies. That part should be easy.
Surrounding try/catch would be more difficult and I gather I would need to do some "flow analysis". How is the question now.
Well, along with the getApplicableMethodNames() method, you need to override the visitMethod() function. You will get the MethodInvocationNode. Just fetch the arguments passed in the invocation using the node.astArguments() function. This returns a list of arguments that you can iterate through using a StrictListAccessor. Check the arguments passed and if it matches your criterion, run a loop and keep calculating the parent node of the invocation node till a try node is found. If it is a try node, then you can get a list of catches using node.astCatches(). Scan the list and find the appropriate exception. If not found, then report.
You can code like this:
check if it is surrounded by try/catch:
#Override
public void visitMethod(JavaContext context, AstVisitor visitor, MethodInvocation node) {
// check the specified class that invoke the method
JavaParser.ResolvedMethod method = (JavaParser.ResolvedMethod) context.resolve(node);
JavaParser.ResolvedClass clzz = method.getContainingClass();
boolean isSubClass = false;
// sSupportSuperType = {"class name"};
for (int i = 0; i < sSupportSuperType.length; i++) {
if (clzz.isSubclassOf(sSupportSuperType[i], false)) {
isSubClass = true;
break;
}
}
if (!isSubClass) return;
// check if surrounded by try/catch
Node parent = node;
while (true) {
Try tryCatch = context.getParentOfType(parent, Try.class);
if (tryCatch == null) {
break;
} else {
for (Catch aCatch : tryCatch.astCatches()) {
TypeReference catchType = aCatch.astExceptionDeclaration().astTypeReference();
}
parent = tryCatch;
}
}
// get the arguments string
String str = node.astArguments().first().toString();
if (!str.startsWith("\"SOME_PROPERTY\"")) {
context.report(ISSUE, node, context.getLocation(node), "message");
}
}
before this you have to define the specific method by override:
#Override
public List<String> getApplicableMethodNames() {
return Collections.singletonList("set");
}