Can Delegates.observable() be serializable? - kotlin

Given a class
class Pizza(name: String?) : Serializable {
var name: String? by Delegates.observable(name, {_,_,_ -> })
}
Why is this not serializable? It crashes with
Caused by: java.io.NotSerializableException: com.xxx.xxx.Pizza$$special$$inlined$observable$1

The reason behind your issue is the delegates are stored as an array in a synthetic backing field which is neither marked as transient nor serialziable, so it prevents the serialization. However just marking the property with #Transient will probably ruin your serialized form. And may not work at all
Before JetBrains decide to make a final resolution to this issue, you should use writeReplace and readResolve to override the default serializing mechanism. I've provided a sample solution below:
class Pizza(name: String?) : Serializable {
#Transient var name: String? by Delegates.observable(name)
private fun writeReplace(stream: ObjectOutputStream): Object = SerialProxy(name)
private class SerialProxy(var name: String): Serializable {
private fun readResolve(): Object = Pizza(name)
}
}
readObject()/writeObject() doesn't work because you have no way to set the delegate after constructor is invoked without using reflection.

Related

How to set serializer to an internal class extending a public interface?

I'm trying to create a serializer using kotlinx.serialization for Compose Desktop classes, I have this :
#Serializer(forClass = MutableState::class)
class MutableStateSerializer<T>(private val dataSerializer: KSerializer<T>) : KSerializer<MutableState<T>> {
override fun deserialize(decoder: Decoder) = mutableStateOf(decoder.decodeSerializableValue(dataSerializer))
override val descriptor: SerialDescriptor = dataSerializer.descriptor
override fun serialize(encoder: Encoder, value: MutableState<T>) = encoder.encodeSerializableValue(dataSerializer, value.value)
}
That should be used for instances of MutableState class (as the #Serializer annotation says), but I have to put an explicit serializer for each properties otherwise I get this error :
xception in thread "main" kotlinx.serialization.SerializationException: Class 'SnapshotMutableStateImpl' is not registered for polymorphic serialization in the scope of 'MutableState'.
Mark the base class as 'sealed' or register the serializer explicitly
Code used :
#Serializable
class Test {
var number = mutableStateOf(0)
}
fun main() {
val json = Json { prettyPrint = true }
val serialized = json.encodeToString(Test())
println(serialized)
}
I have to put this annotation on my property :
#Serializable(with = MutableStateSerializer::class)
Isn't there a way to automatically link my serializer to the MutableState interface ? As the SnapshotMutableStateImpl is internal I can't set it to this class.
What you want is currently not possible. Other people seem to have requested a feature similar to what you need on GitHub: Global Custom Serializers.
Currently, for 3rd party classes, you need to specify the serializer in one of three ways:
Pass the custom serializer to the encode/decode method in case you are serializing it as the root object.
Specify the serializer on the property using #Serializable, as you do now.
Specify the serializer to be used by a full file using #file:UseSerializers.
Note that due to type inference, number will be attempted to be serialized as the return type of mutableStateOf. If you specify the type as an interface instead (does it have a supertype?), using polymorphic serialization, you could try to register the concrete type and pass your custom serializer there for the concrete type. Not really what this feature is designed for, but I believe it may work if you don't want to specify your serializer in multiple places. However, the serialized form will then include a type discriminator everywhere.

kotlinx.serialization: inject local parameter

I need to inject a local value to a class constructor during deserialization. For example, look at the following class.
#Serializable
class SomeClass(val local: Context, val serialized: String)
I want the field local to be skipped during serialization and substituted with some predefined local value during deserialization.
The reason behind is that I'm going to transfer models through network, but operations on these models rely on a local context which I want to inject.
Because I haven't find any standard ways to achieve it, I've decided to make use of contextual serialization. So I have written the serializer:
class ContextualInjectorSerializer<T>(private val localValue: T) : KSerializer<T> {
override val descriptor = SerialDescriptor("ValueInjection", StructureKind.OBJECT)
override fun deserialize(decoder: Decoder): T {
decoder.beginStructure(descriptor).endStructure(descriptor)
return localValue
}
override fun serialize(encoder: Encoder, value: T) {
encoder.beginStructure(descriptor).endStructure(descriptor)
}
}
And used it this way:
// Context is marked with #Serializable(with = ContextSerializer::class)
val json = Json(JsonConfiguration.Stable, SerializersModule {
contextual(Context::class, ContextualInjectorSerializer(context))
})
// serialize/deserialize
Surprisingly, it works pretty fine on JVM. However, when I compiled it to JS and tested, I got TypeError: Cannot read property 'siteId' of undefined. Here siteId is a field of Context which I try to access.
Is there a standard way to inject local parameters? What's wrong with my trick?

GSON Deserialization of subtypes in Kotlin

I'm not sure if this is a limitation, a bug or just bad use of GSON. I need to have a hierarchy of Kotlin objects (parent with various subtypes) and I need to deserialize them with GSON. The deserialized object has correct subtype but its field enumField is actually null.
First I thought this is because the field is passed to the "super" constructor but then I found out that "super" works well for string, just enum is broken.
See this example:
import com.google.gson.Gson
import com.google.gson.GsonBuilder
import com.google.gson.typeadapters.RuntimeTypeAdapterFactory
open class Parent(val stringField: String,
val enumField: EnumField) {
enum class EnumField {
SUBTYPE1,
SUBTYPE2,
SUBTYPE3
}
}
class Subtype1() : Parent("s1", EnumField.SUBTYPE1)
class Subtype2(stringField: String) : Parent(stringField, EnumField.SUBTYPE2)
class Subtype3(stringField: String, type: EnumField) : Parent(stringField, type)
val subtypeRAF = RuntimeTypeAdapterFactory.of(Parent::class.java, "enumField")
.registerSubtype(Subtype1::class.java, Parent.EnumField.SUBTYPE1.name)
.registerSubtype(Subtype2::class.java, Parent.EnumField.SUBTYPE2.name)
.registerSubtype(Subtype3::class.java, Parent.EnumField.SUBTYPE3.name)
fun main() {
val gson = GsonBuilder()
.registerTypeAdapterFactory(subtypeRAF)
.create()
serializeAndDeserialize(gson, Subtype1()) // this works (but not suitable)
serializeAndDeserialize(gson, Subtype2("s2")) // broken
serializeAndDeserialize(gson, Subtype3("s3", Parent.EnumField.SUBTYPE3)) // broken
}
private fun serializeAndDeserialize(gson: Gson, obj: Parent) {
println("-----------------------------------------")
val json = gson.toJson(obj)
println(json)
val obj = gson.fromJson(json, Parent::class.java)
println("stringField=${obj.stringField}, enumField=${obj.enumField}")
}
Any ideas how to achieve to deserialization of enumField?
(deps: com.google.code.gson:gson:2.8.5, org.danilopianini:gson-extras:0.2.1)
P.S.: Note that I have to use RuntimeAdapterFactory because I have subtypes with different set of fields (I did not do it in the example so it is easier to understand).
Gson requires constructors without arguments to work properly (see deep-dive into Gson code below). Gson constructs raw objects and then use reflection to populate fields with values.
So if you just add some argument-less dummy constructors to your classes that miss them, like this:
class Subtype1() : Parent("s1", EnumField.SUBTYPE1)
class Subtype2(stringField: String) : Parent(stringField, EnumField.SUBTYPE2) {
constructor() : this("")
}
class Subtype3(stringField: String, type: EnumField) : Parent(stringField, type) {
constructor() : this("", EnumField.SUBTYPE3)
}
you will get the expected output:
-----------------------------------------
{"stringField":"s1","enumField":"SUBTYPE1"}
stringField=s1, enumField=SUBTYPE1
-----------------------------------------
{"stringField":"s2","enumField":"SUBTYPE2"}
stringField=s2, enumField=SUBTYPE2
-----------------------------------------
{"stringField":"s3","enumField":"SUBTYPE3"}
stringField=s3, enumField=SUBTYPE3
Gson deep-dive
If you want to investigate the internals of Gson, a tip is to add an init { } block to Subtype1 since it works and then set a breakpoint there. After it is hit you can move up the call stack, step through code, set more breakpoints etc, to reveal the details of how Gson constructs objects.
By using this method, you can find the Gson internal class com.google.gson.internal.ConstructorConstructor and its method newDefaultConstructor(Class<? super T>) that has code like this (I have simplified for brevity):
final Constructor<? super T> constructor = rawType.getDeclaredConstructor(); // rawType is e.g. 'class Subtype3'
Object[] args = null;
return (T) constructor.newInstance(args);
i.e. it tries to construct an object via a constructor without arguments. In your case for Subtype2 and Subtype3, the code will result in a caught exception:
} catch (NoSuchMethodException e) { // java.lang.NoSuchMethodException: Subtype3.<init>()
return null; // set breakpoint here to see
}
i.e. your original code fails since Gson can't find constructors without arguments for Subtype2 and Subtype3.
In simple cases, the problem with missing argument-less constructors is worked around with the newUnsafeAllocator(Type, final Class<? super T>)-method in ConstructorConstructor, but with RuntimeTypeAdapterFactory that does not work correctly.
I may be missing something in what you're trying to achieve, but is it necessary to use the RuntimeTypeAdapterFactory? If we take out the line where we register that in the Gson builder, so that it reads
val gson = GsonBuilder()
.create()
Then the output returns the enum we would expect, which looks to be serialising / deserialising correctly. I.e. the output is:
-----------------------------------------
{"stringField":"s1","enumField":"SUBTYPE1"}
stringField=s1, enumField=SUBTYPE1
-----------------------------------------
{"stringField":"s2","enumField":"SUBTYPE2"}
stringField=s2, enumField=SUBTYPE2
-----------------------------------------
{"stringField":"s3","enumField":"SUBTYPE3"}
stringField=s3, enumField=SUBTYPE3
It also may be an idea to implement Serializable in Parent. i.e.
open class Parent(val stringField: String, val enumField: EnumField) : Serializable {
enum class EnumField {
SUBTYPE1,
SUBTYPE2,
SUBTYPE3
}
}
Try adding #SerializedName annotation to each enum.
enum class EnumField {
#SerializedName("subtype1")
SUBTYPE1,
#SerializedName("subtype2")
SUBTYPE2,
#SerializedName("subtype3")
SUBTYPE3
}

Implementing a type-safe class hierarchy w/ a nullable value

I (often) have a resource with two states, pre-created and post-created, where both states have the same fields except for an id field. id is null in the pre-created state and non-null in the post-created state.
I would like to define and use this resource in a clean and type-safe way.
It's common to represent this ID field as a nullable, which handles both scenarios with minimal boilerplate in the class definition. The problem is that it creates a lot of boilerplate in the business logic because you can't assert whether a resource is pre-created or post-created by looking at its type.
Here is an example of the nullable approach:
data class Resource(val id: String?, val property: String)
This is simple to define, but not as simple to handle with due to lack of compile-time guarantees.
Here's an example of a more type-safe approach:
sealed class Resource(val property: String) {
class WithoutID(property: String): Resource(property)
class WithID(val id: String, property: String): Resource(property)
}
This allows me to pass around Resource.WithID and Resource.WithoutID, which have all the same fields and methods, except for id.
One inconvenience with this type-safe approach is that the resource definition code gets quite bloated when you have many property fields. This bloating makes the code harder to read.
I'm wondering if there's an alternative approach with less boilerplate, or if Kotlin has any features that make this kind of thing simpler.
What about defining
sealed class MayHaveId<T> { abstract val record: T }
class WithId<T>(val id: String, override val record: T): MayHaveId<T>()
class WithoutId<T>(override val record: T): MayHaveId<T>()
class Resource(val property: String)
// and other similar types
and using WithId<Resource> and WithoutId<Resource>? In Scala you could add an implicit conversion from MayHaveId<T> to T, but not in Kotlin, alas, nor can you write : T by record. Still should be clean enough to use.
One of the options is to get into composition relying on properties inside interfaces.
interface Resource {
val property: String
}
interface WithId : Resource {
val id: Int
}
interface WithOtherField : Resource {
val otherField: Any
}
class WithoutIdImpl(override val property: String) : Resource
class WithIdImpl(override val id: Int, override val property: String) : WithId
class WithIdAndOtherField(
override val id: Int,
override val otherField: Any,
override val property: String) : WithId, WithOtherField
I didn't get from your example, how you're going to switch between two states of Resource. So probably there is a gap to overcome.
Probably, Smart casts will allow to switch states.

What does 'by' keyword do in Kotlin?

While developing for android I sometimes come across something that looks like this:
var someModel: someViewModel by notNullAndObservable { vm ->
...
}
I don't understand what the significance of the by keyword is.
In simple words, you can understand by keyword as provided by.
From the perspective of property consumer, val is something that has getter (get) and var is something that has getter and setter (get, set). For each var property there is a default provider of get and set methods that we don't need to specify explicitly.
But, when using by keyword, you are stating that this getter/getter&setter is provided elsewhere (i.e. it's been delegated). It's provided by the function that comes after by.
So, instead of using this built-in get and set methods, you are delegating that job to some explicit function.
One very common example is the by lazy for lazy loading properties.
Also, if you are using dependency injection library like Koin, you'll see many properties defined like this:
var myRepository: MyRepository by inject() //inject is a function from Koin
In the class definition, it follows the same principle, it defines where some function is provided, but it can refer to any set of methods/properties, not just get and set.
class MyClass: SomeInterface by SomeImplementation, SomeOtherInterface
This code is saying:
'I am class MyClass and I offer functions of interface SomeInterface which are provided by SomeImplementation.
I'll implement SomeOtherInterface by myself (that's implicit, so no by there).'
In the Kotlin reference you will find two uses for by, the first being Delegated Properties which is the use you have above:
There are certain common kinds of properties, that, though we can implement them manually every time we need them, would be very nice to implement once and for all, and put into a library. Examples include lazy properties: the value gets computed only upon first access,
observable properties: listeners get notified about changes to this property,
storing properties in a map, not in separate field each.
Here you delegate the getter/setter to another class that does the work and can contain common code. As another example, some of the dependency injectors for Kotlin support this model by delegating the getter to receiving a value from a registry of instances managed by the dependency injection engine.
And Interface/Class delegation is the other use:
The Delegation pattern has proven to be a good alternative to implementation inheritance, and Kotlin supports it natively requiring zero boilerplate code. A class Derived can inherit from an interface Base and delegate all of its public methods to a specified object
Here you can delegate an interface to another implementation so the implementing class only needs to override what it wants to change, while the rest of the methods delegate back to a fuller implementation.
A live example would be the Klutter Readonly/Immutable collections where they really just delegate the specific collection interface to another class and then override anything that needs to be different in the readonly implementation. Saving a lot of work not having to manually delegate all of the other methods.
Both of these are covered by the Kotlin language reference, start there for base topics of the language.
The syntax is:
val/var <property name>: <Type> by <expression>.
The expression after by is the delegate
if we try to access the value of property p, in other words, if we call get() method of property p, the getValue() method of Delegate instance is invoked.
If we try to set the value of property p, in other words, if we call set() method of property p, the setValue() method of Delegate instance is invoked.
Delegation for property:
import kotlin.reflect.KProperty
class Delegate {
// for get() method, ref - a reference to the object from
// which property is read. prop - property
operator fun getValue(ref: Any?, prop: KProperty<*>) = "textA"
// for set() method, 'v' stores the assigned value
operator fun setValue(ref: Any?, prop: KProperty<*>, v: String) {
println("value = $v")
}
}
object SampleBy {
var s: String by Delegate() // delegation for property
#JvmStatic fun main(args: Array<String>) {
println(s)
s = "textB"
}
}
Result:
textA
value = textB
Delegation for class:
interface BaseInterface {
val value: String
fun f()
}
class ClassA: BaseInterface {
override val value = "property from ClassA"
override fun f() { println("fun from ClassA") }
}
// The ClassB can implement the BaseInterface by delegating all public
// members from the ClassA.
class ClassB(classA: BaseInterface): BaseInterface by classA {}
object SampleBy {
#JvmStatic fun main(args: Array<String>) {
val classB = ClassB(ClassA())
println(classB.value)
classB.f()
}
}
Result:
property from ClassA
fun from ClassA
Delegation for parameters:
// for val properties Map is used; for var MutableMap is used
class User(mapA: Map<String, Any?>, mapB: MutableMap<String, Any?>) {
val name: String by mapA
val age: Int by mapA
var address: String by mapB
var id: Long by mapB
}
object SampleBy {
#JvmStatic fun main(args: Array<String>) {
val user = User(mapOf("name" to "John", "age" to 30),
mutableMapOf("address" to "city, street", "id" to 5000L))
println("name: ${user.name}; age: ${user.age}; " +
"address: ${user.address}; id: ${user.id}")
}
}
Result:
name: John; age: 30; address: city, street; id: 5000