Simplex algorithm in scipy package python - optimization

I am reading the documentation of the Simplex Algorithm provided in the Scipy package of python, but the example shown in the last at this documentation page is solving a minimization problem. Whereas I want to do a maximization. How would you alter the parameters in order to perform a maximization if we can do maximization using this package?

Every maximization problem can be transformed into a minimization problem by multiplying the c-vector by -1: Say you have the 2-variable problem from the documentation, but want to maximize c=[-1,4]
from scipy.optimize import linprog
import numpy
c = numpy.array([-1, 4]) # your original c for maximization
c *= -1 # negate the objective coefficients
A = [[-3, 1], [1, 2]]
b = [6, 4]
x0_bnds = (None, None)
x1_bnds = (-3, None)
res = linprog(c, A, b, bounds=(x0_bnds, x1_bnds))
print("Objective = {}".format(res.get('fun') * -1)) # don't forget to retransform your objective back!
outputs
>>> Objective = 11.4285714286

Related

TensorFlow Probability (tfp) equivalent of np.quantile()

I am trying to find a TensorFlow equivalent of np.quantile(). I have found tfp.stats.quantiles() (tfp stands for TensorFlow Probability). However, its constructs are a bit different from that of np.quantile().
Consider the following example:
import tensorflow_probability as tfp
import tensorflow as tf
import numpy as np
inputs = tf.random.normal((1, 4096, 4))
print("NumPy")
print(np.quantile(inputs.numpy(), q=0.9, axis=1, keepdims=False))
I am not sure from the TFP docs how I could write the above using tfp.stats.quantile(). I tried checking out the source code of both methods, but it didn't help.
Let me try to be more helpful here than I was on GitHub.
There is a difference in behavior between np.quantile and tfp.stats.quantiles. The key difference here is that numpy.quantile will
Compute the q-th quantile of the data along the specified axis.
where q is the
Quantile or sequence of quantiles to compute, which must be between 0 and 1 inclusive.
and tfp.stats.quantiles
Given a vector x of samples, this function estimates the cut points by returning num_quantiles + 1 cut points
So you need to tell tfp.stats.quantiles how many quantiles you want and then select out the qth quantile. If it isn't clear how to do this just from the API, if you look at the source for tfp.stats.quantiles (for v0.19.0) we can see that it shows us how we can get a similar return structure as NumPy.
For completeness, setting up a virtual environment with
$ cat requirements.txt
numpy==1.24.2
tensorflow==2.11.0
tensorflow-probability==0.19.0
allows us to run
import numpy as np
import tensorflow as tf
import tensorflow_probability as tfp
inputs = tf.random.normal((1, 4096, 4), dtype=tf.float64)
q = 0.9
numpy_quantiles = np.quantile(inputs.numpy(), q=q, axis=1, keepdims=False)
tfp_quantiles = tfp.stats.quantiles(
inputs, num_quantiles=100, axis=1, interpolation="linear"
)[int(q * 100)]
assert np.allclose(numpy_quantiles, tfp_quantiles.numpy())
print(f"{numpy_quantiles=}")
# numpy_quantiles=array([[1.31727661, 1.2699167 , 1.28735237, 1.27137588]])
print(f"{tfp_quantiles=}")
# tfp_quantiles=<tf.Tensor: shape=(1, 4), dtype=float64, numpy=array([[1.31727661, 1.2699167 , 1.28735237, 1.27137588]])>
You could also use tfp.stats.percentile(inputs, 90., axis=1, keepdims=False) -- the only difference from quantile is the 90. replacing .90.

tf.gather_nd to torch operators

I saw the topics about the same problem, but my requirments are different here.
I have this line:
offsets = tf.gather_nd(offsets, kpt_inds, batch_dims=1)
While offsets is a torch tensor of (1,1,320,256,2) sizes, and kpt_inds is a tensor of (1,k,2) and k is a variable.
I want to change that operation with a set of torch operators that will produce the same output.
The operation have to choose the offsets in the specific k indices (that specified in kpt_inds).
I have already tried:
offsets = offsets[:, :, keypoints[:, :, 0], keypoints[:, :, 1], :]
It works fine, but I have a problem with it, and I must change the whole operation solely using torch operators (without python shortcuts). The reason is the underministic behaviour of tensorrt when I use this shortcuts.
You can try the .index_select method:
from einops import rearrange # or use torch.unsqueeze instead
kpt_x = torch.ByteTensor(rearrange(keypoints[:, :, 0], '... -> 1 ...'))
kpt_y = torch.ByteTensor(rearrange(keypoints[:, :, 1], '... -> 1 1 ...'))
offsets = offsets.index_select(kpt_x)
offsets = offsets.index_select(kpt_y)

How does GEKKO optimization with bounded variables work?

I am using GEKKO to estimate the parameters of a differential equation and I have bounded one of the variables between 0 and 1. However, when I solve the ODE, I get values outside of the bounds for this variable, so I was wondering if somebody knew how GEKKO finds the solution, as this might help me resolve the issue.
Here is the code I use to fit the data. This gives me a solution x and u where x is between 0 and 1.
However, afterwards, I try to solve the ODE using scipy.integrate.solve_ivp, with the initial value of u that I got, and the solution I get for u is not between this bounds. Since it should be unique, I am wondering what is the process that GEKKO follows to find the solution (does it proyect the values to the bound or how does it deal with this?) Any comment is very appreciated.
Here is an MVCE. If you run it you can see that with GEKKO, I get a solution between the bounds and then, when I solve the ODE with solve_ivp, I don't get the same solution. Can you explain why this happens and how can I deal with it? I want to use solve_ivp to predict the next values.
from scipy.integrate import solve_ivp
from gekko import GEKKO
import matplotlib.pyplot as plt
time=[0.0, 0.11784511784511785, 0.18855218855218855,\
0.2356902356902357]
m = GEKKO(remote=False)
m.time= [0.0, 0.11784511784511785, 0.18855218855218855,\
0.2356902356902357]
x_data= [0.0003777630481280617, 0.002024573836061331,\
0.0008954383363035536, 0.005331749410182463]
x = m.CV(value=x_data, lb=0); x.FSTATUS = 1 # fit to measurement
x.SPLO = 0
sigma = m.FV(value=0.5, lb= 0, ub=1); sigma.STATUS=1
d = m.Param(0.05)
k = m.Param(0.001)
b = m.Param(0.5)
r = m.FV(value=0.5, lb= 0); r.STATUS=1
m_param = m.Param(1)
u = m.Var(value=0.1, lb=0, ub=1)
m.free(u)
a = m.Param(0.999)
Kmax= m.Param(100000)
m.Equations([x.dt()==x*(r*(1-a*u**2)*(1-x/(Kmax*(1-a*u**2)))-\
m_param/(k+b*u)-d), u.dt() == \
sigma*((-2*a*(b**2)*r*(u**3)+4*a*b*k*r*(u**2)\
+2*a*(k**2)*r*u-b*m_param)/((b*u+k)**2))])
m.options.IMODE = 5 # dynamic estimation
m.options.NODES = 5 # collocation nodes
m.options.EV_TYPE = 1 # linear error (2 for squared)
m.solve(disp=False, debug=False) # display solver output
def model_case_3(t, z, r, k, b, Kmax, sigma):
m=1
a=0.999
x, u= z
dxdt = x*(r*(1-a*u**2)*(1-x/(Kmax*(1-a*u**2)))-m/(k+b*u)-0.05)
dudt = sigma*((-2*a*(b**2)*r*(u**3)+4*a*b*k*r*(u**2)\
+2*a*(k**2)*r*u-b*m)/((b*u+k)**2))
return [dxdt, dudt]
sol = solve_ivp(fun=model_case_3, t_span=[0.0, 0.2356902356902357],\
y0=[0.0003777630481280617, u.value[0]],\
t_eval=[0.0, 0.11784511784511785, 0.18855218855218855,\
0.2356902356902357], \
args=(r.value[0], 0.001, 0.5,1000000 , sigma.value[0]))
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,3), constrained_layout=True)
ax1.set_title('x')
ax1.plot(time, x.value, time, sol['y'][0])
ax2.set_title('u')
ax2.plot(time, u.value, time, sol['y'][1])
plt.show()
It is not an issue with the version of Gekko as I have Gekko 0.2.8, so I am wondering if it has anything to do with the initialization of variables. I run the example I posted on spyder (I was using google colab) and I got the correct solution, but when I run the rest of the cases I got again negative values for u (solving with solve_ivp), which is quite strange.
You can add a bound to a variable when it is created by setting lb (lower bound) and ub (upper bound).
z = m.Var(lb=0,ub=10)
After you create the variable, the bound is adjusted with .lower and .upper.
z.LOWER = 1
z.UPPER = 9
Here is an example problem that shows the use of bounds where x is constrained to be greater than 0.5.
from gekko import GEKKO
t_data = [0, 0.1, 0.2, 0.4, 0.8, 1]
x_data = [2.0, 1.6, 1.2, 0.7, 0.3, 0.15]
m = GEKKO(remote=False)
m.time = t_data
x = m.CV(value=x_data,lb=0.5,ub=3); x.FSTATUS = 1 # fit to measurement
k = m.FV(); k.STATUS = 1 # adjustable parameter
m.Equation(x.dt()== -k * x) # differential equation
m.options.IMODE = 5 # dynamic estimation
m.options.NODES = 5 # collocation nodes
m.solve(disp=False) # display solver output
k = k.value[0]; print(k)
A plot of the results shows that the bounds are enforced but the model prediction does not fit the data because of the lower bound constraint (x>=0.5).
import numpy as np
import matplotlib.pyplot as plt # plot solution
plt.plot(m.time,x.value,'bo',\
label='Predicted (k='+str(np.round(k,2))+')')
plt.plot(m.time,x_data,'rx',label='Measured')
# plot exact solution
t = np.linspace(0,1); xe = 2*np.exp(-k*t)
plt.plot(t,xe,'k:',label='Exact Solution')
plt.legend()
plt.xlabel('Time'), plt.ylabel('Value')
plt.show()
Without the restrictive lower bound, the solver optimizes to best fit the points.
x = m.CV(value=x_data,lb=0.0,ub=3)
Response 1 to Question Edit
The only way that a variable (such as u) is outside of the bounds is if the solver did not report a successful solution. To report a successful solution, the solver must satisfy the Karush Kuhn Tucker conditions for optimality. I recommend that you check that it satisfied all of the equations by checking that m.options.APPSTATUS==1 after the m.solve() command. If you can include an MVCE (https://stackoverflow.com/help/minimal-reproducible-example) that has sample data so the script can run, we can help you check it.
Response 2 to Question Edit
Thanks for including a minimal reproducible example. Here are the results that I get with Gekko 0.2.8. If you are using an earlier version, I recommend that you upgrade with pip install gekko --upgrade.
The solver reports a successful solution.
EXIT: Optimal Solution Found.
The solution was found.
The final value of the objective function is 0.03164650667928192
---------------------------------------------------
Solver : IPOPT (v3.12)
Solution time : 0.23339999999999997 sec
Objective : 0.0316473666078486
Successful solution
---------------------------------------------------
The constraints x>=0 and 0<=u<=1 are satisfied. Could it just be an issue with an older version of Gekko?

Strange behaviour of numpy eigenvector: bug or no bug

NumPy's eigenvector solution differs from Wolfram Alpha and my personal calculation by hand.
>>> import numpy.linalg
>>> import numpy as np
>>> numpy.linalg.eig(np.array([[-2, 1], [2, -1]]))
(array([-3., 0.]), array([[-0.70710678, -0.4472136 ],
[ 0.70710678, -0.89442719]]))
Wolfram Alpha https://www.wolframalpha.com/input/?i=eigenvectors+%7B%7B-2,1%7D,%7B%2B2,-1%7D%7D and my personal calculation give the eigenvectors (-1, 1) and (2, 1). The NumPy solution however differs.
NumPy's calculated eigenvalues however are confirmed by Wolfram Alpha and my personal calculation.
So, is this a bug in NumPy or is my understanding of math to simple? A similar thread Numpy seems to produce incorrect eigenvectors sees the main difference in rounding/scaling of the eigenvectors but the deviation between the solutions would be massive.
Regards
numpy.linalg.eig normalizes the eigen vectors with the results being the column vectors
eig_vectors = np.linalg.eig(np.array([[-2, 1], [2, -1]]))[1]
vec_1 = eig_vectors[:,0]
vec_2 = eig_vectors[:,1]
now these 2 vectors are just normalized versions of the vectors you calculated ie
print(vec_1 * np.sqrt(2)) # where root 2 is the magnitude of [-1, 1]
print(vec_1 * np.sqrt(5)) # where root 5 is the magnitude of [2, 1]
So bottom line the both sets of calculations are equivalent just Numpy likes to normalze the results.

Specify the spherical covariance in numpy's multivariate_normal random sampling

In numpy manual, it is said:
Instead of specifying the full covariance matrix, popular approximations include:
Spherical covariance (cov is a multiple of the identity matrix)
Has anybody ever specified spherical covariance? I am trying to make it work to avoid building the full covariance matrix, which is too much memory-consuming.
If you just have a diagonal covariance matrix, it is usually easier (and more efficient) to just scale standard normal variates yourself instead of using multivariate_normal().
>>> import numpy as np
>>> stdevs = np.array([3.0, 4.0, 5.0])
>>> x = np.random.standard_normal([100, 3])
>>> x.shape
(100, 3)
>>> x *= stdevs
>>> x.std(axis=0)
array([ 3.23973255, 3.40988788, 4.4843039 ])
While #RobertKern's approach is correct, you can let numpy handle all of that for you, as np.random.normal will do broadcasting on multiple means and standard deviations:
>>> np.random.normal(0, [1,2,3])
array([ 0.83227999, 3.40954682, -0.01883329])
To get more than a single random sample, you have to give it an appropriate size:
>>> x = np.random.normal(0, [1, 2, 3], size=(1000, 3))
>>> np.std(x, axis=0)
array([ 1.00034817, 2.07868385, 3.05475583])