Puzzling why variable fails to update, causing the dreaded HardFault? - variables

I'm migrating to STM32, debugging STM32F103C8T6 with Keil MDK5, running at 72 MHz. Total RAM is less than 200 bytes only, C99 mode enabled. I have a function as shown below, which I do not understand why the variable new_data_Length fails to update most of the time, remains as ZERO, causing the HardFault exception caught by HardFault_Handler(). Being a newbie in STM32 and Keil MDK, maybe there's something I'm missing. Any ideas?
uint8_t size_A = 22; // globally declared
uint8_t data_Length = someValue; // globally declared
someFunction(dData, data_Length, size_A);
.
.
in other file...
void someFunction(uint8_t* rData, uint8_t dLength, uint8_t sizeA)
{
uint8_t new_data_Length = dLength + sizeA + 1;
unit8_t newData[new_data_Length]; // <<--malloc fails because new_Data_Length is 0
// unit8_t* newData;
// newData = malloc(new_data_Length); // <<--malloc fails here too...
// if (newData == 0)
// {
.
.
.
}

Related

STM32 Crash on Flash Sector Erase

I'm trying to write 4 uint32's of data into the flash memory of my STM32F767ZI so I've looked at some examples and in the reference manual but still I cannot do it. My goal is to write 4 uint32's into the flash and read them back and compare with the original data, and light different leds depending on the success of the comparison.
My code is as follows:
void flash_write(uint32_t offset, uint32_t *data, uint32_t size) {
FLASH_EraseInitTypeDef EraseInitStruct = {0};
uint32_t SectorError = 0;
HAL_FLASH_Unlock();
EraseInitStruct.TypeErase = FLASH_TYPEERASE_SECTORS;
EraseInitStruct.VoltageRange = FLASH_VOLTAGE_RANGE_3;
EraseInitStruct.Sector = FLASH_SECTOR_11;
EraseInitStruct.NbSectors = 1;
//EraseInitStruct.Banks = FLASH_BANK_1; // or FLASH_BANK_2 or FLASH_BANK_BOTH
st = HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError);
if (st == HAL_OK) {
for (int i = 0; i < size; i += 4) {
st = HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, FLASH_USER_START_ADDR + offset + i, *(data + i)); //This is what's giving me trouble
if (st != HAL_OK) {
// handle the error
break;
}
}
}else {
// handle the error
}
HAL_FLASH_Lock();
}
void flash_read(uint32_t offset, uint32_t *data, uint32_t size) {
for (int i = 0; i < size; i += 4) {
*(data + i) = *(__IO uint32_t*)(FLASH_USER_START_ADDR + offset + i);
}
}
int main(void) {
uint32_t data[] = {'a', 'b', 'c', 'd'};
uint32_t read_data[] = {0, 0, 0, 0};
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
flash_write(0, data, sizeof(data));
flash_read(0, read_data, sizeof(read_data));
if (compareArrays(data,read_data,4))
{
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7,SET);
}
else
{
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_14,SET);
}
return 0;
}
The problem is that before writing data I must erase a sector, and when I do it with the HAL_FLASHEx_Erase(&EraseInitStruct, &SectorError), function, the program always crashes, and sometimes even corrupts my codespace forcing me to update firmware.
I've selected the sector farthest from the code space but still it crashes when i try to erase it.
I've read in the reference manual that
Any attempt to read the Flash memory while it is being written or erased, causes the bus to
stall. Read operations are processed correctly once the program operation has completed.
This means that code or data fetches cannot be performed while a write/erase operation is
ongoing.
which I believe means the code should ideally be run from RAM while we operate on the flash, but I've seen other people online not have this issue so I'm wondering if that's the only problem I have. With that in mind I wanted to confirm if this is my only issue, or if I'm doing something wrong?
In your loop, you are adding multiples of 4 to i, but then you are adding i to data. When you add to a pointer it is automatically multiplied by the size of the pointed type, so you are adding multiples of 16 bytes and reading past the end of your input buffer.
Also, make sure you initialize all members of EraseInitStruct. Uncomment that line and set the correct value!

STM32 reading variables out of Received Buffer with variable size

I am not really familiar with programming in STM32. I am using the micro controller STM32F303RE.
I am receiving data via a UART connection with DMA.
Code:
HAL_UARTEx_ReceiveToIdle_DMA(&huart2, RxBuf, RxBuf_SIZE);
__HAL_DMA_DISABLE_IT(&hdma_usart2_rx, DMA_IT_HT);
I am writing the value into a Receiving Buffer and then transfer it into a main buffer. This function and declaration is down before the int main(void).
#define RxBuf_SIZE 100
#define MainBuf_Size 100
uint8_t RxBuf[RxBuf_SIZE];
uint8_t MainBuf[MainBuf_Size];
void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart,uint16_t Size){
if( huart -> Instance == USART2){
memcpy (MainBuf, RxBuf, Size);
HAL_UARTEx_ReceiveToIdle_DMA(&huart2, RxBuf, RxBuf_SIZE);
}
for (int i = 0; i<Size; i++){
if((MainBuf[i] == 'G') && (MainBuf[i+1] == 'O')){
RecieveData();
HAL_UART_DMAStop(&huart2);
}
}
}
I receive know the data into a buffer and it stops as soon as "GO" is transmitted. Until this point it is working. The function ReceiveData() should then transform this buffer to the variables. But it isn't working for me.
Now I want to transform this received data with "breakpoints" into variables.
So I want to send: "S2000S1000S1S10S2GO".
I always have 5 variables. (in this case: 2000, 1000, 1, 10, 2) I want to read the data out of the string and transform it into an uint16_t to procude. The size/ length of the variables could be changed. That's why I tried to use like some breakpoint.

STM8 UART polling receive is mangles

I'm trying to connect to an STM8 using uart. The STM seems to transmit data OK, but what it receives seems to be mostly junk, and often seems to receive 2 bytes at once. Here's the code:
#include "../stm8.h"
//
// Setup the system clock to run at 16MHz using the internal oscillator.
//
void InitialiseSystemClock()
{
CLK_ICKR = 0; // Reset the Internal Clock Register.
CLK_ICKR |= CLK_ICKR_HSIEN ; // Enable the HSI.
CLK_ECKR = 0; // Disable the external clock.
while ((CLK_ICKR & CLK_ICKR_HSIRDY) == 0); // Wait for the HSI to be ready for use.
CLK_CKDIVR = 0; // Ensure the clocks are running at full speed.
CLK_PCKENR1 = 0xff; // Enable all peripheral clocks.
CLK_PCKENR2 = 0xff; // Ditto.
CLK_CCOR = 0; // Turn off CCO.
CLK_HSITRIMR = 0; // Turn off any HSIU trimming.
CLK_SWIMCCR = 0; // Set SWIM to run at clock / 2.
CLK_SWR = 0xe1; // Use HSI as the clock source.
CLK_SWCR = 0; // Reset the clock switch control register.
CLK_SWCR |= CLK_SWCR_SWEN; // Enable switching.
while ((CLK_SWCR & CLK_SWCR_SWBSY) != 0); // Pause while the clock switch is busy.
}
//
// Setup the UART to run at 115200 baud, no parity, one stop bit, 8 data bits.
//
// Important: This relies upon the system clock being set to run at 16 MHz.
//
void init_uart()
{
//
// Clear the Idle Line Detected bit in the status register by a read
// to the UART1_SR register followed by a Read to the UART1_DR register.
//
//unsigned char tmp = UART1_SR;
//tmp = UART1_DR;
//UART1_SR = 0xC0; // mcarter set to default value
//
// Reset the UART registers to the reset values.
//
UART1_CR1 = 0;
UART1_CR2 = 0;
UART1_CR4 = 0;
UART1_CR3 = 0;
UART1_CR5 = 0;
UART1_GTR = 0;
UART1_PSCR = 0;
//
// Now setup the port to 115200,n,8,1.
//
// clear certain bits
UART1_CR1 &= ~UART1_CR1_M ; // 8 Data bits.
UART1_CR1 &= ~UART1_CR1_PCEN; // Disable parity
// stop bits
UART1_CR3 &= 0b11001111; // unmask the stop bit to default (1 stop bit)
//UART1_CR3 |= 0b00100000; // two stop bits
//UART1_CR3 |= 0b00110000; // 1.5 stop bits
//UART1_CR3 &= ~UART1_CR3_STOP; // 1 stop bit.
#if 1 //115200 baud
//UART1_BRR2 = 0x0a; // given in original example
UART1_BRR2 = 0x0b; // Set the baud rate registers to 115200 baud
UART1_BRR1 = 0x08; // based upon a 16 MHz system clock.
#else // 9600 baud, but seems to be worse than 115200
UART1_BRR2 = 0x03;
UART1_BRR1 = 0x69;
#endif
//
// Disable the transmitter and receiver.
//
//UART1_CR2_TEN = 0; // Disable transmit.
//UART1_CR2_REN = 0; // Disable receive.
//
// Set the clock polarity, lock phase and last bit clock pulse.
//
UART1_CR3 |= UART1_CR3_CPOL;
UART1_CR3 |= UART1_CR3_CPHA;
//UART1_CR3 |= UART1_CR3_LBCL; // this seems to cause problems
UART1_CR2 |= UART1_CR2_TEN; // enable transmit
UART1_CR2 |= UART1_CR2_REN; // enable receive
UART1_CR3 |= UART1_CR3_CLKEN; // unable uart clock
}
char uart_getc()
{
while((UART1_SR & UART1_SR_RXNE)==0); // Block until char rec'd
//char c = UART1_DR;
//return c;
return UART1_DR;
}
void uart_putc(char c)
{
while((UART1_SR & UART1_SR_TXE)==0); // Wait for transmission complete
UART1_DR = c; // transmit char
}
void UARTPrintf(char *message)
{
char *ch = message;
while (*ch)
uart_putc(*ch++);
}
void main()
{
disable_interrupts();
InitialiseSystemClock();
init_uart();
enable_interrupts();
UARTPrintf("Uart example: you type, I echo\n\r");
while (1)
{
//continue;
char c = uart_getc();
uart_putc(c);
//UARTPrintf("Hello from my microcontroller....\n\r");
//for (long counter = 0; counter < 2500000; counter++);
}
}
Relevant declaration headers are:
#define UART1_SR *(uchar*)(0x5230)
#define UART1_DR *(uchar*)(0x5231)
#define UART1_BRR1 *(uchar*)(0x5232)
#define UART1_BRR2 *(uchar*)(0x5233)
#define UART1_CR1 *(uchar*)(0x5234)
#define UART1_CR2 *(uchar*)(0x5235)
#define UART1_CR3 *(uchar*)(0x5236)
#define UART1_CR4 *(uchar*)(0x5237)
#define UART1_CR5 *(uchar*)(0x5238)
#define UART1_GTR *(uchar*)(0x5239)
#define UART1_PSCR *(uchar*)(0x523A)
#define UART1_CR1_M (1<<4)
#define UART1_CR1_PCEN (1<<2)
#define UART1_CR2_TEN (1<<3)
#define UART1_CR2_REN (1<<2)
#define UART1_CR3_STOP 4
#define UART1_CR3_CPOL (1<<2)
#define UART1_CR3_CPHA (1<<1)
#define UART1_CR3_LBCL (1<<0)
#define UART1_CR3_CLKEN (1<<3)
#define UART1_SR_TXE (1<<7)
#define UART1_SR_TC (1<<6)
#define UART1_SR_RXNE (1<<5)
I'm not really sure about stop bits, and all that. It's just "regular" serial communication.
I found that if I uncommented the line
//UART1_CR3 |= UART1_CR3_LBCL; // this seems to cause problems
then the stm8 prints out a continuous stream of junk. But with it commented out, the mcu seems to correctly know that there has been a transmission. There doesn't seem to be any pattern as to what it sees, though.
Hmm. The offending line seems to be
UART1_CR3 |= UART1_CR3_CLKEN;
It's purpose seem to be to "enable the SCLK pin". I don't really understand what's going on here, but according to a pinout diagram, one of the purposes of pin PD4 is UART1_CK. So you can attach a UART clock to the STM8 and this enables it?? And thereby causes problems if a clock isn't attached. It doesn't make that much sense, really; I didn't know uarts could have external clocks.
Anyway, commenting out the line seems to have fixed things.

STM32F769NI USB CDC host problem sending simple data to the device

I am making HID for some data acquisition system. There are a lot of sensors who store test data and when I need I get to them and connect via USB and take it. USB host sent 3 bytes and USB device, if bytes are correct, sends its stored data. Sounds simple.
Previously it was implemented on PC, but now I try to implement it on STM32F769 Discovery and have some serious problems.
I am using ARM Keil 5.27, code generated with STM32CubeMX 5.3.0. I tried just to make a plain simple program, later to integrate with the entire touchscreen interface. I tried to implement this code in main:
if (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin))
while (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin))
{
Transmission_function();
}
And the function itself:
#define DLE 0x10
#define STX 0x2
uint8_t tx_buf[]={DLE, STX, 120}, RX_FLAG;
uint32_t size_tx=sizeof(tx_buf);
void Transmission_function (void)
{
if (Appli_state == APPLICATION_READY)
{
i=0;
USBH_CDC_Transmit(&hUsbHostHS, tx_buf, size_tx);
HAL_Delay(50);
RX_FLAG=0;
}
}
It should send the message after I press the blue button on the Discovery board. All that I get is Hard Fault. While trying to debug, I tried manually to check after which action I get this error and it was functioning in stm32f7xx_ll_usb.c:
HAL_StatusTypeDef USB_WritePacket(USB_OTG_GlobalTypeDef *USBx, uint8_t *src,
uint8_t ch_ep_num, uint16_t len, uint8_t dma)
{
uint32_t USBx_BASE = (uint32_t)USBx;
uint32_t *pSrc = (uint32_t *)src;
uint32_t count32b, i;
if (dma == 0U)
{
count32b = ((uint32_t)len + 3U) / 4U;
for (i = 0U; i < count32b; i++)
{
USBx_DFIFO((uint32_t)ch_ep_num) = *((__packed uint32_t *)pSrc);
pSrc++;
}
}
return HAL_OK;
}
But trying to scroll back in disassembly I notice, that just before Hard Fault program was in this function inside stm32f7xx_hal_hcd.c, in case GRXSTS_PKTSTS_IN:
static void HCD_RXQLVL_IRQHandler(HCD_HandleTypeDef *hhcd)
{
USB_OTG_GlobalTypeDef *USBx = hhcd->Instance;
uint32_t USBx_BASE = (uint32_t)USBx;
uint32_t pktsts;
uint32_t pktcnt;
uint32_t temp;
uint32_t tmpreg;
uint32_t ch_num;
temp = hhcd->Instance->GRXSTSP;
ch_num = temp & USB_OTG_GRXSTSP_EPNUM;
pktsts = (temp & USB_OTG_GRXSTSP_PKTSTS) >> 17;
pktcnt = (temp & USB_OTG_GRXSTSP_BCNT) >> 4;
switch (pktsts)
{
case GRXSTS_PKTSTS_IN:
/* Read the data into the host buffer. */
if ((pktcnt > 0U) && (hhcd->hc[ch_num].xfer_buff != (void *)0))
{
(void)USB_ReadPacket(hhcd->Instance, hhcd->hc[ch_num].xfer_buff, (uint16_t)pktcnt);
/*manage multiple Xfer */
hhcd->hc[ch_num].xfer_buff += pktcnt;
hhcd->hc[ch_num].xfer_count += pktcnt;
if ((USBx_HC(ch_num)->HCTSIZ & USB_OTG_HCTSIZ_PKTCNT) > 0U)
{
/* re-activate the channel when more packets are expected */
tmpreg = USBx_HC(ch_num)->HCCHAR;
tmpreg &= ~USB_OTG_HCCHAR_CHDIS;
tmpreg |= USB_OTG_HCCHAR_CHENA;
USBx_HC(ch_num)->HCCHAR = tmpreg;
hhcd->hc[ch_num].toggle_in ^= 1U;
}
}
break;
case GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
break;
case GRXSTS_PKTSTS_IN_XFER_COMP:
case GRXSTS_PKTSTS_CH_HALTED:
default:
break;
}
}
Last few lines from Dissasembly shows this:
0x080018B4 E8BD81F0 POP {r4-r8,pc}
0x080018B8 0000 DCW 0x0000
0x080018BA 1FF8 DCW 0x1FF8
Why it fails? How could I fix it? I do not have much experience with USB protocol.
I will post my walkaround this, but I am not sure why it worked. Solution was to use EXTI0 interrupt instead of just detection if PA0 is high, as I showed I used here:
if (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin))
while (HAL_GPIO_ReadPin(BUTTON_GPIO_Port, BUTTON_Pin))
Transmission_function();
I changed it to this:
void EXTI0_IRQHandler(void)
{
/* USER CODE BEGIN EXTI0_IRQn 0 */
if(Appli_state == APPLICATION_READY){
USBH_CDC_Transmit(&hUsbHostHS, Buffer, 3);
}
/* USER CODE END EXTI0_IRQn 0 */
HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
/* USER CODE BEGIN EXTI0_IRQn 1 */
/* USER CODE END EXTI0_IRQn 1 */
}

STM32F4: SD-Card using FatFs and USB fails

(also asked on SE: Electrical Engineering)
In my application, I've set up a STM32F4, SD-Card and USB-CDC (all with CubeMX).
Using a PC, I send commands to the STM32, which then does things on the SD-Card.
The commands are handled using a "communicationBuffer" (implemented by me) which waits for commands over USB, UART, ... and sets a flag, when a \n character was received. The main loop polls for this flag and if it is set, a parser handles the command. So far, so good.
When I send commands via UART, it works fine, and I can get a list of the files on the SD-Card or perform other access via FatFs without a problem.
The problem occurs, when I receive a command via USB-CDC. The parser works as expected, but FatFs claims FR_NO_FILESYSTEM (13) in f_opendir.
Also other FatFs commands fail with this error-code.
After one failed USB-command, commands via UART will also fail. It seems, as if the USB somehow crashes the initialized SD-Card-driver.
Any idea how I can resolve this behaviour? Or a starting point for debugging?
My USB-Implementation:
I'm using CubeMX, and therefore use the prescribed way to initialize the USB-CDC interface:
main() calls MX_USB_DEVICE_Init(void).
In usbd_conf.c I've got:
void HAL_PCD_MspInit(PCD_HandleTypeDef* pcdHandle)
{
GPIO_InitTypeDef GPIO_InitStruct;
if(pcdHandle->Instance==USB_OTG_FS)
{
/* USER CODE BEGIN USB_OTG_FS_MspInit 0 */
/* USER CODE END USB_OTG_FS_MspInit 0 */
/**USB_OTG_FS GPIO Configuration
PA11 ------> USB_OTG_FS_DM
PA12 ------> USB_OTG_FS_DP
*/
GPIO_InitStruct.Pin = OTG_FS_DM_Pin|OTG_FS_DP_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
GPIO_InitStruct.Alternate = GPIO_AF10_OTG_FS;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* Peripheral clock enable */
__HAL_RCC_USB_OTG_FS_CLK_ENABLE();
/* Peripheral interrupt init */
HAL_NVIC_SetPriority(OTG_FS_IRQn, 7, 1);
HAL_NVIC_EnableIRQ(OTG_FS_IRQn);
/* USER CODE BEGIN USB_OTG_FS_MspInit 1 */
/* USER CODE END USB_OTG_FS_MspInit 1 */
}
}
and the receive-process is implemented in usbd_cdc_if.c as follows:
static int8_t CDC_Receive_FS (uint8_t* Buf, uint32_t *Len)
{
/* USER CODE BEGIN 6 */
mRootObject->mUsbBuffer->fillBuffer(Buf, *Len);
USBD_CDC_ReceivePacket(&hUsbDeviceFS);
return (USBD_OK);
/* USER CODE END 6 */
}
fillBuffer is implemented as follows (I use the same implementation for UART and USB transfer - with separate instances for the respective interfaces. mBuf is an instance-variable of type std::vector<char>):
void commBuf::fillBuffer(uint8_t *buf, size_t len)
{
// Check if last fill has timed out
if(SystemTime::getMS() - lastActionTime > timeout) {
mBuf.clear();
}
lastActionTime = SystemTime::getMS();
// Fill new content
mBuf.insert(mBuf.end(), buf, buf + len);
uint32_t done = 0;
while(!done) {
for(auto i = mBuf.end() - len, ee = mBuf.end(); i != ee; ++i) {
if(*i == '\n') {
newCommand = true;
myCommand = std::string((char*) &mBuf[0],i - mBuf.begin() + 1);
mBuf.erase(mBuf.begin(), mBuf.begin() + (i - mBuf.begin() + 1));
break;
}
}
done = 1;
}
}
I resolved the problem:
In usb_cdc_if.c the #define APP_RX_DATA_SIZE was set to 4 (for some unknown reason). As this is lower than the packet size, incoming packets of a larger size than 4 bytes were overwriting my memory.
It happened, that the following portion of my memory was the FATFS* FatFs[] pointer-list to the initialized FATFS-Filesystem structs.
So subsequently the address to this struct was overwritten, when a command of 5 or more bytes arrived.
Phew, that was a tough one.